Effective gene prediction by high resolution frequency estimator based on least-norm solution technique
نویسندگان
چکیده
Linear algebraic concept of subspace plays a significant role in the recent techniques of spectrum estimation. In this article, the authors have utilized the noise subspace concept for finding hidden periodicities in DNA sequence. With the vast growth of genomic sequences, the demand to identify accurately the protein-coding regions in DNA is increasingly rising. Several techniques of DNA feature extraction which involves various cross fields have come up in the recent past, among which application of digital signal processing tools is of prime importance. It is known that coding segments have a 3-base periodicity, while non-coding regions do not have this unique feature. One of the most important spectrum analysis techniques based on the concept of subspace is the least-norm method. The least-norm estimator developed in this paper shows sharp period-3 peaks in coding regions completely eliminating background noise. Comparison of proposed method with existing sliding discrete Fourier transform (SDFT) method popularly known as modified periodogram method has been drawn on several genes from various organisms and the results show that the proposed method has better as well as an effective approach towards gene prediction. Resolution, quality factor, sensitivity, specificity, miss rate, and wrong rate are used to establish superiority of least-norm gene prediction method over existing method.
منابع مشابه
Prediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملIterative quadratic maximum likelihood based estimator for a biased sinusoid
The problem of parameter estimation of a single sinusoid with unknown offset in additive Gaussian noise is addressed. After deriving the linear prediction property of the noise-free signal, the maximum likelihood estimator for the frequency parameter is developed. The optimum estimator is relaxed according to the iterative quadratic maximum likelihood technique. The remaining parameters are the...
متن کاملMulti-Frame Super-Resolution Image Reconstruction Employing the Novel Estimator L1inv-norm
In multi-frame Super-Resolution (SR) image reconstruction a single High-Resolution (HR) image is created from a sequence of Low-Resolution (LR) frames. This work considers stochastic regularized multi-frame SR image reconstruction from the data-fidelity point of view. In fact, a novel estimator named inv L1 norm is proposed for assuring fidelity to the measured data. This estimator presents t...
متن کاملModeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique
Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...
متن کاملBlind Carrier Frequency Offset Estimation Using an Improved Minimum Output Variance Approach for Synchronous MC-CDMA Systems
This letter deals with blind carrier frequency offset estimation based on minimum output variance (MOV) approaches without devoting training sequence and pilot symbol for synchronous multicarrier-code division multiple access (MC-CDMA) systems. It has been shown that the performance of MOV estimator is degraded because the effect of noise and wideband spread-spectrum signals. In conjunction wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014