Characterization of active R2 retrotransposition in the rDNA locus of Drosophila simulans.
نویسندگان
چکیده
The rRNA gene (rDNA) loci of all arthropod lineages contain non-LTR retrotransposable elements that have evolved to specifically insert into the 28S rRNA genes. Extensive in vitro experiments have been conducted to investigate the mechanism of R2 retrotransposition but little is known of the insertion frequency or cellular factors that might regulate R2 activity. In this article, isofemale lines obtained from a population of Drosophila simulans were surveyed for recent R2 insertions. Within most lines, all individuals showed the same collection of R2 insertions, providing no evidence for recent R2 activity. However, in a few of the isofemale lines, virtually all individuals differed in their R2 insertion profiles. The descendants of individual pairs of flies from these "active lines" rapidly accumulated new insertions. The frequent insertion of new R2 elements was associated with the elimination of old R2 elements from the rDNA locus. The existence of lines in which R2 retrotransposes frequently and lines in which the elements appear dormant suggests that cellular mechanisms that can regulate the activity of R2 exist. Retrotransposition activity was correlated with the number of full-length R2 elements but not with the size of the rDNA locus or the number of uninserted units.
منابع مشابه
The Pattern of R2 Retrotransposon Activity in Natural Populations of Drosophila simulans Reflects the Dynamic Nature of the rDNA Locus
The pattern and frequency of insertions that enable transposable elements to remain active in a population are poorly understood. The retrotransposable element R2 exclusively inserts into the 28S rRNA genes where it establishes long-term, stable relationships with its animal hosts. Previous studies with laboratory stocks of Drosophila simulans have suggested that control over R2 retrotransposit...
متن کاملDynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans.
The mobile elements R1 and R2 insert specifically into the rRNA gene locus (rDNA locus) of arthropods, a locus known to undergo concerted evolution, the recombinational processes that preserve the sequence homogeneity of all repeats. To monitor how rapidly individual R1 and R2 insertions are turned over in the rDNA locus by these processes, we have taken advantage of the many 5' truncation vari...
متن کاملRapid R2 retrotransposition leads to the loss of previously inserted copies via large deletions of the rDNA locus.
R2 non-long terminal repeat retrotransposable elements insert specifically into the 28S rRNA genes of a wide range of animals. These elements maintain long-term stable relationships with the host genome. By scoring the variation present at the 5' ends of individual R2 copies, lines of Drosophila simulans have been identified with high rates of R2 retrotransposition. Comparing the R2 elements pr...
متن کاملA Population Genetic Model for the Maintenance of R2 Retrotransposons in rRNA Gene Loci
R2 retrotransposable elements exclusively insert into the tandemly repeated rRNA genes, the rDNA loci, of their animal hosts. R2 elements form stable long-term associations with their host, in which all individuals in a population contain many potentially active copies, but only a fraction of these individuals show active R2 retrotransposition. Previous studies have found that R2 RNA transcript...
متن کاملA single lineage of r2 retrotransposable elements is an active, evolutionarily stable component of the Drosophila rDNA locus.
R2 elements are non-long-terminal-repeat (non-LTR) retrotransposons that insert specifically in the 28S rRNA genes of many insects. Previous reports concerning this element in the genus Drosophila have suggested that R2 elements are absent from many species of this genus, particularly those species from the subgenus Drosophila. In this report, we present an extensive study of the distribution a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 170 1 شماره
صفحات -
تاریخ انتشار 2005