A Neural Model of Contour Integration in the Primary Visual Cortex
نویسنده
چکیده
Experimental observations suggest that contour integration may take place in V1. However, there has yet to be a model of contour integration that uses only known V1 elements, operations, and connection patterns. This article introduces such a model, using orientation selective cells, local cortical circuits, and horizontal intracortical connections. The model is composed of recurrently connected excitatory neurons and inhibitory interneurons, receiving visual input via oriented receptive fields resembling those found in primary visual cortex. Intracortical interactions modify initial activity patterns from input, selectively amplifying the activities of edges that form smooth contours in the image. The neural activities produced by such interactions are oscillatory and edge segments within a contour oscillate in synchrony. It is shown analytically and empirically that the extent of contour enhancement and neural synchrony increases with the smoothness, length, and closure of contours, as observed in experiments on some of these phenomena. In addition, the model incorporates a feedback mechanism that allows higher visual centers selectively to enhance or suppress sensitivities to given contours, effectively segmenting one from another. The model makes the testable prediction that the horizontal cortical connections are more likely to target excitatory (or inhibitory) cells when the two linked cells have their preferred orientation aligned with (or orthogonal to) their relative receptive field center displacements.
منابع مشابه
Spatially-Variant Structuring Elements Inspired by the Neurogeometry of the Visual Cortex
The V1-region of the primary visual cortex performs contour integration in the early mammalian visual system. The geometry of the neural connections of the V1-region has been mathematically described as a roto-translational continuous space. In this work, a bio-inspired methodology for processing 2D images based on the V1-region neurogeometrical structure is proposed. The input image is first t...
متن کاملGeometrical Computations Explain Projection Patterns of Long-Range Horizontal Connections in Visual Cortex
Neurons in primary visual cortex respond selectively to oriented stimuli such as edges and lines. The long-range horizontal connections between them are thought to facilitate contour integration. While many physiological and psychophysical findings suggest that collinear or association field models of good continuation dictate particular projection patterns of horizontal connections to guide th...
متن کاملA neural model of contour integration in the primary visual cortex1
Experimental observations suggest that contour integration may take place in V1. However, there has yet to be a model of contour integration that only uses known V1 elements, operations, and connection patterns. This paper introduces such a model, using orientation selective cells, local cortical circuits, and horizontal intra-cortical connections. The model is composed of recurrently connected...
متن کاملA multi-layer sparse coding network learns contour coding from natural images
An important approach in visual neuroscience considers how the function of the early visual system relates to the statistics of its natural input. Previous studies have shown how many basic properties of the primary visual cortex, such as the receptive fields of simple and complex cells and the spatial organization (topography) of the cells, can be understood as efficient coding of natural imag...
متن کاملDisambiguating the roles of area V1 and the lateral occipital complex (LOC) in contour integration
Contour integration, the linking of collinear but disconnected visual elements across space, is an essential facet of object and scene perception. Here, we set out to arbitrate between two previously advanced mechanisms of contour integration: serial facilitative interactions between collinear cells in the primary visual cortex (V1) versus pooling of inputs in higher-order visual areas. To this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 10 4 شماره
صفحات -
تاریخ انتشار 1998