Construction and Filtration of Lightweight Formalized MDS Matrices
نویسندگان
چکیده
Zhang Shi-Yi, Wang Yong-juan, Gao Yang, Wang Tao Corresponding author: Wang Yong-juan, E-mail: [email protected] Abstract: The 4 4 MDS matrix over 2 F is widely used in the design of block cipher's linear diffusion layers. However, considering the cost of a lightweight cipher's implementation, the sum of XOR operations of a MDS matrix usually plays the role of measure. During the research on the construction of the lightweight 4 4 MDS matrices, this paper presents the concept of formalized MDS matrix: some of the entries that make up the matrix are known, and their positions are determined, and the criterions of the MDS matrix is satisfied. In this paper, using the period and minimal polynomial theory of entries over finite fields, a new construction method of formalized MDS matrices is proposed. A large number of MDS matrices can be obtained efficiently by this method, and their number distribution has significant structural features. However, the algebraic structure of the lightest MDS matrices is also obvious. This paper firstly investigates the construction of 4 4 lightweight MDS matrices, analyzes the distribution characteristics of the them, and the feasibility of the construction method. Then, for the lightest MDS matrices obtained from the method above, the algebraic relations in themselves and between each other are studied, and the important application of the alternating group 4 A and it's subgroup, the Klein four-group is found.
منابع مشابه
Lightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives
Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number ...
متن کاملOn Constructions of MDS Matrices From Circulant-Like Matrices For Lightweight Cryptography
Maximum distance separable (MDS) matrices have applications not only in coding theory but are also of great importance in the design of block ciphers and hash functions. It is highly nontrivial to find MDS matrices which could be used in lightweight cryptography. In a SAC 2004 paper, Junod et. al. constructed a new class of efficient MDS matrices whose submatrices were circulant matrices and th...
متن کاملConstruction of Lightweight MDS Matrices over Matrix Polynomial Residue Ring
In this article, we investigate the construction of lightweight MDS matrices over the matrix polynomial residue ring. According to distributions of the minimum polynomial, distributions of XOR count and equivalence classes of MDS matrices, we propose an algorithm, which not only can construct lightest MDS matrices, but also is evidently more efficient than previous methods. Moreover, we investi...
متن کاملLightweight MDS Serial-type Matrices with Minimal Fixed XOR Count (Full version)
Many block ciphers and hash functions require the diffusion property of Maximum Distance Separable (MDS) matrices. Serial matrices with the MDS property obtain a trade-off between area requirement and clock cycle performance to meet the needs of lightweight cryptography. In this paper, we propose a new class of serial-type matrices called Diagonal-Serial Invertible (DSI) matrices with the spars...
متن کاملIACR Transactions on Symmetric Cryptology
Near-MDS matrices provide better trade-offs between security and efficiency compared to constructions based on MDS matrices, which are favored for hardwareoriented designs. We present new designs of lightweight linear diffusion layers by constructing lightweight near-MDS matrices. Firstly generic n×n near-MDS circulant matrices are found for 5 ≤ n ≤ 9. Secondly , the implementation cost of inst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017