Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

نویسندگان

  • Hasituya
  • Zhongxin Chen
  • Limin Wang
  • Jia Liu
چکیده

In recent years, the area of plastic-mulched farmland (PMF) has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV) function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1) satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM) algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using Spectral and Textural Features

In recent decades, plastic-mulched farmland has expanded rapidly in China as well as in the rest of the world because it results in marked increases of crop production. However, plastic-mulched farmland significantly influences the environment and has so far been inadequately investigated. Accurately monitoring and mapping plastic-mulched farmland is crucial for agricultural production, environ...

متن کامل

Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data

Using plastic mulching for farmland is booming around the world. Despite its benefit of protecting crops from unfavorable conditions and increasing crop yield, the massive use of the plastic-mulching technique causes many environmental problems. Therefore, timely and effective mapping of plastic-mulched farmland (PMF) is of great interest to policy-makers to leverage the trade-off between econo...

متن کامل

Introducing Satellite Remote Sensing Systems and its Application in Archaeology Case Study: Behshahr Plain- Mazandaran

Human groups have considered the Behshahr plain of Mazandaran in the past Due to its particular geographical shape, location between the Caspian Sea and mountains, and the existence of some rivers in the region. However, our knowledge of this area is limited to several published surveys and archaeological investigation of its ancient sites. No detailed research has conducted on the formation of...

متن کامل

Mapping Plastic-Mulched Farmland with C-Band Full Polarization SAR Remote Sensing Data

Plastic mulching is an important technology in agricultural production both in China and the rest of the world. In spite of its benefit of increasing crop yields, the booming expansion of the plastic mulching area has been changing the landscape patterns and affecting the environment. Accurate and effective mapping of Plastic-Mulched Farmland (PMF) can provide useful information for leveraging ...

متن کامل

Mapping Spatial Variability of Soil Salinity Using Remote Sensing Data and Geostatistical Analysis: A Case of Shadegan, Khuzestan

Extended abstract 1- Introduction Soil salinity is one of the most important desertification parameters in many parts of the world. Thus, preparing soil salinity maps in macro scales is necessary. Water and soil salinity as one of the contributing parameters in desertification, cause soil and vegetation degradation. Soil salinization represents many negative effects on the earth systems such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017