ar X iv : 0 90 8 . 33 63 v 2 [ m at h - ph ] 1 S ep 2 00 9 Geometric Hyperplanes of the Near Hexagon L 3 × GQ ( 2 , 2 )

نویسندگان

  • M. Saniga
  • P. Lévay
  • M. Planat
  • P. Pracna
چکیده

Having in mind their potential quantum physical applications, we classify all geometric hyperplanes of the near hexagon that is a direct product of a line of size three and the generalized quadrangle of order two. There are eight different kinds of them, totalling to 1023 = 2 10 − 1 = |PG(9, 2)|, and they form two distinct families intricately related with the points and lines of the Veldkamp space of the quadrangle in question.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 3 . 07 15 v 1 [ m at h - ph ] 4 M ar 2 00 9 The Veldkamp Space of GQ ( 2 , 4 )

It is shown that the Veldkamp space of the unique generalized quadrangle GQ(2,4) is isomorphic to PG(5,2). Since the GQ(2,4) features only two kinds of geometric hyperplanes, namely point’s perp-sets and GQ(2,2)s, the 63 points of PG(5,2) split into two families; 27 being represented by perp-sets and 36 by GQ(2,2)s. The 651 lines of PG(5,2) are found to fall into four distinct classes: in parti...

متن کامل

ar X iv : 0 90 3 . 07 15 v 2 [ m at h - ph ] 6 J ul 2 00 9 The Veldkamp Space of GQ ( 2 , 4 )

It is shown that the Veldkamp space of the unique generalized quadrangle GQ(2,4) is isomorphic to PG(5,2). Since the GQ(2,4) features only two kinds of geometric hyperplanes, namely point’s perp-sets and GQ(2,2)s, the 63 points of PG(5,2) split into two families; 27 being represented by perp-sets and 36 by GQ(2,2)s. The 651 lines of PG(5,2) are found to fall into four distinct classes: in parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009