Regularized multivariate stochastic regression
نویسندگان
چکیده
In many high dimensional problems, the dependence structure among the variables can be quite complex. An appropriate use of the regularization techniques coupled with other classical statistical methods can often improve estimation and prediction accuracy and facilitate model interpretation, by seeking a parsimonious model representation that involves only the subset of revelent variables. We propose two regularized stochastic regression approaches, for efficiently estimating certain sparse dependence structure in the data. We first consider a multivariate regression setting, in which the large number of responses and predictors may be associated through only a few channels/pathways and each of these associations may only involve a few responses and predictors. We propose a regularized reduced-rank regression approach, in which the model estimation and rank determination are conducted simultaneously and the resulting regularized estimator of the coefficient matrix admits a sparse singular value decomposition (SVD). Secondly, we consider model selection of subset autoregressive moving-average (ARMA) modelling, for which automatic selection methods do not directly apply because the innovation process is latent. We propose to identify the optimal subset ARMA model by fitting a penalized regression, e.g. adaptive Lasso, of the time series on its lags and the lags of the residuals from a long autoregression fitted to the time-series data, where the residuals serve as proxies for the innovations. Computation algorithms and regularization parameter selection methods for both proposed approaches are developed, and their properties are ex-
منابع مشابه
Distributed Stochastic Optimization of the Regularized Risk
Many machine learning algorithms minimize a regularized risk, and stochastic optimization is widely used for this task. When working with massive data, it is desirable to perform stochastic optimization in parallel. Unfortunately, many existing stochastic algorithms cannot be parallelized efficiently. In this paper we show that one can rewrite the regularized risk minimization problem as an equ...
متن کاملBlock Regularized Lasso for Multivariate Multi-Response Linear Regression
The multivariate multi-response (MVMR) linear regression problem is investigated, in which design matrices are Gaussian with covariance matrices Σ = ( Σ, . . . ,Σ ) for K linear regressions. The support union of K p-dimensional regression vectors (collected as columns of matrix B∗) are recovered using l1/l2-regularized Lasso. Sufficient and necessary conditions to guarantee successful recovery ...
متن کاملRobust Estimation of Natural Gradient in Optimization by Regularized Linear Regression
We are interested in the optimization of the expected value of a function by following a steepest descent policy over a statistical model. Such approach appears in many different model-based search meta-heuristics for optimization, for instance in the large class of random search methods in stochastic optimization and Evolutionary Computation. We study the case when statistical models belong to...
متن کاملCovariance-regularized regression and classification for high-dimensional problems.
In recent years, many methods have been developed for regression in high-dimensional settings. We propose covariance-regularized regression, a family of methods that use a shrunken estimate of the inverse covariance matrix of the features in order to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing its log likelihood, under a multivariate norma...
متن کاملFrom PAC-Bayes Bounds to KL Regularization
We show that convex KL-regularized objective functions are obtained from a PAC-Bayes risk bound when using convex loss functions for the stochastic Gibbs classifier that upper-bound the standard zero-one loss used for the weighted majority vote. By restricting ourselves to a class of posteriors, that we call quasi uniform, we propose a simple coordinate descent learning algorithm to minimize th...
متن کامل