The Pore Loop Domain of TRPV1 Is Required for Its Activation by the Volatile Anesthetics Chloroform and Isoflurane.

نویسندگان

  • Corinna Kimball
  • Jialie Luo
  • Shijin Yin
  • Hongzhen Hu
  • Ajay Dhaka
چکیده

The environmental irritant chloroform, a naturally occurring small volatile organohalogen, briefly became the world's most popular volatile general anesthetic (VGA) before being abandoned because of its low therapeutic index. When chloroform comes in contact with skin or is ingested, it causes a painful burning sensation. The molecular basis for the pain associated with chloroform remains unknown. In this study, we assessed the role of transient receptor potential (TRP) channel family members in mediating chloroform activation and the molecular determinants of VGA activation of TRPV1. We identified the subpopulation of dorsal root ganglion (DRG) neurons that are activated by chloroform. Additionally, we transiently expressed wild-type or specifically mutated TRP channels in human embryonic kidney cells and used calcium imaging or whole-cell patch-clamp electrophysiology to assess the effects of chloroform or the VGA isoflurane on TRP channel activation. The results revealed that chloroform activates DRG neurons via TRPV1 activation. Furthermore, chloroform activates TRPV1, and it also activates TRPM8 and functions as a potent inhibitor of the noxious chemical receptor TRPA1. The results also indicate that residues in the outer pore region of TRPV1 previously thought to be required for either proton or heat activation of the channel are also required for activation by chloroform and isoflurane. In addition to identifying the molecular basis of DRG neuron activation by chloroform and the opposing effects chloroform has on different TRP channel family members, the findings of this study provide novel insights into the structural basis for the activation of TRPV1 by VGAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pore Loop Domain of TRPV1 Is Required for Its Activation by the Volatile Anesthetics Chloroform and Isoflurane s

The environmental irritant chloroform, a naturally occurring small volatile organohalogen, briefly became the world’s most popular volatile general anesthetic (VGA) before being abandoned because of its low therapeutic index. When chloroform comes in contact with skin or is ingested, it causes a painful burning sensation. The molecular basis for the pain associated with chloroform remains unkno...

متن کامل

Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics.

The tandem pore domain K channel family mediates background K currents present in excitable cells. Currents passed by certain members of the family are enhanced by volatile anesthetics, thus suggesting a novel mechanism of anesthesia. The newest member of the family, termed TRESK (TWIK [tandem pore domain weak inward rectifying channel]-related spinal cord K channel), has not been studied for a...

متن کامل

Transient receptor potential A1 activation prolongs isoflurane induction latency and impairs respiratory function in mice.

BACKGROUND Isoflurane is a potent volatile anesthetic; however, it evokes airway irritation and neurogenic constriction through transient receptor potential (TRP) A1 channels and sensitizes TRPV1 channels, which colocalizes with TRPA1 in most of the vagal C-fibers innervating the airway. However, little is known about the precise effects of these two channels on the respiratory function during ...

متن کامل

A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics.

Many members of the two-pore-domain potassium (K(+)) channel family have been detected in the mammalian heart but the endogenous correlates of these channels still have to be identified. We investigated whether I(KAA), a background K(+) current activated by negative pressure (stretch) and by arachidonic acid (AA) and sensitive to intracellular acidification, could be the native correlate of TRE...

متن کامل

A TREK-1–Like Potassium Channel in Atrial Cells Inhibited by b-Adrenergic Stimulation and Activated by Volatile Anesthetics

Many members of the two-pore-domain potassium (K) channel family have been detected in the mammalian heart but the endogenous correlates of these channels still have to be identified. We investigated whether IKAA, a background K current activated by negative pressure (stretch) and by arachidonic acid (AA) and sensitive to intracellular acidification, could be the native correlate of TREK-1 in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2015