Cross-Regulation of Protein Stability by p53 and Nuclear Receptor SHP
نویسندگان
چکیده
We report here a novel interplay between tumor suppressor p53 and nuclear receptor SHP that controls p53 and SHP stability. Overexpression of p53 causes rapid SHP protein degradation, which does not require the presence of Mdm2 and is mediated by the proteosome pathway. Overexpressing SHP alone does not affect p53 stability. However, SHP destabilizes p53 by augmentation of Mdm2 ubiquitin ligase activity toward p53. The single amino acid substitution in the SHP protein SHPK170R increases SHP binding to p53 relative to SHP wild-type, whereas SHPG171A variant shows a diminished p53 binding. As a result of the cross-regulation, the tumor suppressor function of p53 and SHP in inhibition of colon cancer growth is compromised. Our findings reveal a unique scenario for a cross-inhibition between two tumor suppressors to keep their expression and function in check.
منابع مشابه
The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملRifampicin Does not Significantly Affect the Expression of Small Heterodimer Partner in Primary Human Hepatocytes
The small/short heterodimer partner (SHP, NR0B2) is a nuclear receptor corepressor lacking a DNA binding domain. SHP is induced by bile acid-activated farnesoid X receptor (FXR) resulting in CYP7A1 gene suppression. In contrast, Pregnane X receptor (PXR) activation by its ligands was recently suggested to inhibit SHP gene transactivation to maximize the induction of PXR target genes. However, t...
متن کاملZinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP
Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatme...
متن کاملCharacterization of the Mitochondrial Localization of the Nuclear Receptor SHP and Regulation of Its Subcellular Distribution by Interaction with Bcl2 and HNF4α
The nuclear receptor small heterodimer partner SHP was shown recently to translocate to the mitochondria, interact with Bcl2, and induce apoptosis in liver cancer cells. However, the exact mitochondrial localization of SHP remains to be determined. In addition, the detailed interaction domains between SHP and Bcl2 have not been characterized. Using biochemistry and molecular biology approaches,...
متن کاملThe Orphan Nuclear Receptor SHP Is a Positive Regulator of Osteoblastic Bone Formation
The orphan nuclear receptor small heterodimer partner (SHP; NR0B2) interacts with a diverse array of transcription factors and regulates a variety of cellular events such as cell proliferation, differentiation, and metabolism. However, the role of SHP in bone formation has not yet been elucidated. SHP expression is significantly increased during osteoblast differentiation, and its expression is...
متن کامل