Blind image deconvolution using a robust GCD approach

نویسندگان

  • S. Unnikrishna Pillai
  • Ben Liang
چکیده

In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Dimensional Blind Deconvolution Using a Robust GCD Approach

In this paper we examine the applicability of the previously proposed Greatest Common Divisor GCD method to blind image deconvolution In this method the desired image is approximated as the GCD of the two dimensional polynomials corresponding to the z transforms of two or more distorted and noisy versions of the same scene assuming that the distortion lters are FIR and relatively co prime We ju...

متن کامل

PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions

Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...

متن کامل

Total Variation Semi-Blind Deconvolution Using Shock Filters

We present a Semi-Blind method for image deconvolution. This method uses a pre-processed image (via the shock filter) as an initial condition for total variation (TV) minimizing blind deconvolution. Using shock filter gives good information on location of the edges, and using variational functional such as Chan and Wong [T.F. Chan and C.K. Wong, Total variation blind deconvolution, IEEE Trans I...

متن کامل

A Fast Algorithm for Single Motion Image Deblurring

The blurred image blind restoration is a difficult problem of image processing. The key is the estimation of the Point Spread Function and non-blind deconvolution algorithm. In this paper, we propose a fast robust algorithm based on radon transform-domain to determine the blur kernel function. Then the blurred images are restored by using a modified fast non-blind deconvolution method based on ...

متن کامل

Non-negative Matrix Factorization Approach to Blind Image Deconvolution

A novel approach to single frame multichannel blind image deconvolution is formulated recently as non-negative matrix factorization (NMF) problem with sparseness constraint imposed on the unknown mixing vector. Unlike most of the blind image deconvolution algorithms, the NMF approach requires no a priori knowledge about the blurring kernel and original image. The experimental performance evalua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 1999