A comparative study of carbon-platinum hybrid nanostructure architecture for amperometric biosensing.

نویسندگان

  • Diana C Vanegas
  • Masashige Taguchi
  • Prachee Chaturvedi
  • Stephanie Burrs
  • Michael Tan
  • Hitomi Yamaguchi
  • Eric S McLamore
چکیده

Carbon and noble metal nanomaterials exhibit unique properties that have been explored over the last few decades for developing electrochemical sensors and biosensors. Hybridization of nanometals to carbon nanomaterials such as graphene or carbon nanotubes produces a synergistic effect on the electrocatalytic activity when compared to either material alone. However, to date there are no comparative studies that directly investigate the effects of nanocarbon concentration and nanocomposite arrangement on electron transport. This comparative study investigated the efficacy of various platinum-carbon hybrid nanostructures for amperometric biosensing. Electroactive surface area, sensitivity towards hydrogen peroxide, response time, limit of detection, and surface roughness were measured for various hybrid nanomaterial arrangements. Both design factors (nanocarbon concentration and network arrangement) influenced the performance of the reduced graphene oxide-based platforms; whereas only nanomaterial arrangement affected the performance of the carbon nanotube-composites. The highest sensitivity towards hydrogen peroxide for reduced graphene oxide nanocomposites (45 ± 3.2 μA mM(-1)) was measured for a graphene concentration of 2 mg mL(-1) in a "sandwich" structure; nanoplatinum layers enveloping the reduced graphene oxide. Likewise, the best carbon nanotube performance toward H2O2 (49 ± 1.4 μA mM(-1)) was measured for a sandwich-type structure with nanoplatinum. The enhanced electrocatalytic activity of this "sandwich" structure was due to a combined effect of electrical junctions formed amongst nanocarbon, and nanocomposite soldering to the electrode surface. The top-down carbon-platinum hybrid nanocomposites in this paper represent a simple, low-cost, approach for formation of high fidelity amperometric sensors with remarkable performance characteristics that are similar to bottom-up fabrication approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Different Functionalized CNTs for Development of Choline Amperometric Biosensor

Choline oxidase (ChOx) was chosen as a model enzyme for evaluating the performance of CNTs’ functional groups for development of enzyme electrodes. CNTs were functionalized with carboxylic acid, amine or amide groups. Carboxylic acid, amine and amide functionalized CNTs were obtained by acid treatment, ethylenediamine or tetraethylenepentamine chemically modification and ammonia plasma treatmen...

متن کامل

Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing.

Artificial enzyme mimics have attracted considerable interest due to easy denaturation and leakage of enzymes during their storage and immobilization procedure. Herein we describe the design of a novel mimic peroxidase, a nanostructure of sheet-like FeS prepared by a simple micelle-assisted synthetic method. Such a nanostructure has a large specific surface area and high peroxidase-like activit...

متن کامل

Biofunctionalization of Gold Nanorods: A Comparative Study on Conjugation Methods for Fabrication of Nanobiosensors

Gold Nanorods have promised variety of applications in biomedicine and biosensing. As a fruitful candidate for early detection and imaging, these plasmonic nanoparticles have been utilized for diagnostic applications of interest. However, prior to design and fabricate SPR-based nanobiosensors, the type and nature of conjugation with biomolecules would be of utmost importance. Herein, four strat...

متن کامل

Comparative investigation on the correction factors of hydrogen permeability on CNTs-Mixed matrix membrane

This paper discusses different important gas permeation models such as “Maxwell”, “Bruggeman”, “Lewis-Neilson”, and “Pal” models to predict “Mixed Matrix Membranes” (MMMs) performance. The main parameter considered and discussed is the permeability of Hydrogen on Carbon Nanotubes (CNTs)-MMM. For evaluation of the theoretical models, experimental data of permeability for H2 were compa...

متن کامل

Comparative investigation on the correction factors of hydrogen permeability on CNTs-Mixed matrix membrane

This paper discusses different important gas permeation models such as “Maxwell”, “Bruggeman”, “Lewis-Neilson”, and “Pal” models to predict “Mixed Matrix Membranes” (MMMs) performance. The main parameter considered and discussed is the permeability of Hydrogen on Carbon Nanotubes (CNTs)-MMM. For evaluation of the theoretical models, experimental data of permeability for H2 were compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 139 3  شماره 

صفحات  -

تاریخ انتشار 2014