Traction force microscopy on-chip: shear deformation of fibroblast cells.
نویسندگان
چکیده
We develop here a microfabrication compatible force measurement technique termed as ultrasoft polydimethylsiloxane-based traction force microscopy (UPTFM). This technique is devised for mapping the cellular traction forces imparted on the adhering substrate, so as to depict the physiological state of the cells surviving in the micro-confinement. We subsequently integrate the technique with a microfluidic platform for evaluating different states of stress in adherent mouse skin fibroblast L929 cells. Utilizing this technique, we monitor the spatio-temporal evolution of cellular traction forces for static incubation periods with no media replenishment as well as for dynamic flow conditions that inherently induce cell deformation and detachment. While the studies conducted on a quiescent fluid medium enable us to obtain an optimal static cell incubation period, those executed under dynamic flow conditions provide us with the minuscule details of the cellular response, deformation and detachment processes. We elucidate the correlation between shear activated cytosolic calcium ion release profile and the local traction forces as an attempt to apply UPTFM in the domain of functional biological purposes. Pertinently, we map the centroidal displacement and the maximum traction stress in characterizing the critical shear rate conditions for the onset of the cell peeling-off process, and demonstrate their contrasting features in comparison to the vesicle lift off processes in a shear flow. Theoretically, these deviations can only be explained by taking physiologically relevant cell adhesion models into consideration, which, while retaining the intrinsic simplicity, are able to reproduce the key experimental outcomes at least with qualitative agreement. We execute further theoretical investigations with variable magnitudes of membrane stiffness, viscosity and adhesion strength, so as to come up with interesting biophysical confluences.
منابع مشابه
High Resolution, Large Deformation 3D Traction Force Microscopy
Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influ...
متن کاملExperimental and numerical determination of cellular traction force on polymeric hydrogels.
Anchorage-dependent cells such as smooth muscle cells (SMCs) rely on the transmission of actomyosin-generated traction forces to adhere and migrate on the extracellular matrix. The cellular traction forces exerted by SMCs on substrate can be measured from the deformation of substrate with embedded fluorescent markers. With the synchronous use of phase-contrast and fluorescent microscopy, the de...
متن کاملFree Form Deformation–Based Image Registration Improves Accuracy of Traction Force Microscopy
Traction Force Microscopy (TFM) is a widespread method used to recover cellular tractions from the deformation that they cause in their surrounding substrate. Particle Image Velocimetry (PIV) is commonly used to quantify the substrate's deformations, due to its simplicity and efficiency. However, PIV relies on a block-matching scheme that easily underestimates the deformations. This is especial...
متن کاملMultidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.
Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force...
متن کاملCALL FOR PAPERS Bioengineering the Lung: Molecules, Materials, Matrix, Morphology, and Mechanics Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF- responsiveness
Marinković A, Mih JD, Park J-A, Liu F, Tschumperlin DJ. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGFresponsiveness. Am J Physiol Lung Cell Mol Physiol 303: L169–L180, 2012. First published June 1, 2012; doi:10.1152/ajplung.00108.2012.—Lung fibroblast functions such as matrix remodeling and activation of latent transforming...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 8 8 شماره
صفحات -
تاریخ انتشار 2008