The effects of sub-shells in highly magnetized relativistic flows
نویسنده
چکیده
Astrophysical sources of relativistic jets or outflows, such as gamma-ray bursts (GRBs), active galactic nuclei (AGN) or micro-quasars, often show strong time variability. Despite such impulsive behavior, most models of these sources assume a steady state for simplicity. Here I consider a time-dependent outflow that is initially highly magnetized and divided into many well-separated sub-shells, as it experiences impulsive magnetic acceleration and interacts with the external medium. In AGN the deceleration by the external medium is usually unimportant and most of the initial magnetic energy is naturally converted into kinetic energy, leading to efficient dissipation in internal shocks as the sub-shells collide. Such efficient low-magnetization internal shocks can also naturally occur in GRBs, where the deceleration by the external medium can be important. A strong lowmagnetization reverse shock can develop, and the initial division into sub-shells allows it to be relativistic and its emission to peak on the timescale of the prompt GRB duration (which is not possible for a single shell). Sub-shells also enable the outflow to reach much higher Lorentz factors that help satisfy existing constraints on GRBs from intrinsic pair opacity and from the afterglow onset time. Subject headings: gamma-rays burst: general — magnetohydrodynamics (MHD) — shock waves — ISM: jets and outflows
منابع مشابه
Nano-Fe3O4@ZrO2-SO3H as highly efficient recyclable catalyst for the green synthesis of fluoroquinolones in ordinary or magnetized water
Core–shell zirconia-coated magnetite nanoparticle bearing sulfonic acid groups (nano-Fe3O4@ZrO2-H3PO4) have been prepared and used as an efficient acid catalyst in the synthesis of fluoroquinolons by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo...
متن کاملNano-Fe3O4@ZrO2-SO3H as highly efficient recyclable catalyst for the green synthesis of fluoroquinolones in ordinary or magnetized water
Core–shell zirconia-coated magnetite nanoparticle bearing sulfonic acid groups (nano-Fe3O4@ZrO2-H3PO4) have been prepared and used as an efficient acid catalyst in the synthesis of fluoroquinolons by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo...
متن کاملar X iv : a st ro - p h / 02 02 34 4 v 1 1 9 Fe b 20 02 Mass loading of pulsar winds
The dynamics of relativistic magnetized mass loaded outflows carrying toroidal magnetic field is analyzed in the context of Pulsar Wind Nebulae (PWNs). Mass loading is very efficient in slowing down super-relativistic magnetized flows and weakening of relativistic shocks. We suggest that weakening of relativistic reverse shocks by mass loading in PWNs is responsible for the low radiative effici...
متن کاملCalculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کاملOn the linear theory of Kelvin-Helmholtz instabilities of relativistic magnetohydrodynamic planar flows
Aims. We investigate the linear stability properties of the plane interface separating two relativistic magnetized flows in relative motion. The two flows are governed by the (special) relativistic equations for a magnetized perfect gas in the infinite conductivity approximation. Methods. By adopting the vortex-sheet approximation, the relativistic magnetohydrodynamics equations are linearized ...
متن کامل