A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials_ (I) General theory
نویسندگان
چکیده
Experimental observations have shown the size-dependent residual surface stresses on spherical nanoparticles and their influence on the effective modulus of heterogeneous nanostructures. Based on these experimental findings, this paper proposes a new interface stress theory that considers the curvature effect on the interfacial energy. To investigate this curvature-dependent interfacial energy, we use the Green elasticity theory to describe the nonlinear constitutive relation of the interface at finite deformation, thus explicitly demonstrating the curvature-dependent nature of the interface stress and bending moment. By introducing a fictitious stress-free configuration, we then propose a new energy functional for heterogeneous hyperelastic solids with interfaces. For the first time, both the Lagrangian and Eulerian descriptions of the generalized Young–Laplace equation, which describes the intrinsic flexural resistance of the interface, are derived from the newly developed energy functional. This new interface stress theory is then used to investigate the residual elastic field in a heterogeneous hyperelastic solid containing interfaces. The present theory differs from the existing theories in that it takes fully into account both the curvature-dependence of the interfacial energy and the interfacial energy-induced residual elastic field in the bulk solid. Furthermore, the fundamental equations of the interface are given in Lagrangian description, which are preferable when considering the effects of residual interface stress, residual interface bending moment and interface elasticity. Finally, two examples are presented to shed light on the significance of this new interface stress theory. A more detailed analysis and applications of the new theory will be presented in Part (II) of this paper. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Magneto-electro-mechanical size-dependent vibration analysis of three-layered nanobeam with initial curvature considering thickness stretching
Thickness stretching effect based on shear and normal deformation theory is used in this paper for magneto-electro-elastic vibration analysis of a three-layered curved nanobeam including a nano core and two piezo-magnetic layers. Size-dependency is included in derivation of governing equations of motion based Eringen's nonlocal elasticity theory. The initial curvature is accounted in calculatio...
متن کاملInterface evolution in three-dimensions with curvature-dependent energy and surface diffusion: interface-controlled evolution, phase transitions, epitaxial growth of elastic films
When the interfacial energy is a nonconvex function of orientation, the anisotropic curvature flow equation becomes backward parabolic. To overcome the instability thus generated, a regularization of the equation that governs the evolution of the interface is needed. In this paper we develop a regularized theory of curvature flow in threedimensions that incorporates surface diffusion and bulk-s...
متن کاملMagneto-electro-mechanical size-dependent vibration analysis of three-layered nanobeam with initial curvature considering thickness stretching
Thickness stretching effect based on shear and normal deformation theory is used in this paper for magneto-electro-elastic vibration analysis of a three-layered curved nanobeam including a nano core and two piezo-magnetic layers. Size-dependency is included in derivation of governing equations of motion based Eringen's nonlocal elasticity theory. The initial curvature is accounted in calculatio...
متن کاملFree Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories
In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...
متن کاملBending and Free Vibration Analysis of Nonlocal Functionally Graded Nanocomposite Timoshenko Beam Model Rreinforced by SWBNNT Based on Modified Coupled Stress Theory
In this article, the bending and free vibration analysis of functionally graded (FG) nanocomposites Timoshenko beam model reinforced by single-walled boron nitride nanotube (SWBNNT) using micro-mechanical approach embedded in an elastic medium is studied. The modified coupled stress (MCST) and nonlocal elasticity theories are developed to take into account the size-dependent effect. The mechani...
متن کامل