Colored Tutte Polynomials and Kauuman Brackets for Graphs of Bounded Tree Width

نویسنده

  • J A Makowsky
چکیده

Jones polynomials and Kauuman polynomials are the most prominent invariants of knot theory. For alternating links, they are easily computable from the Tutte polynomials by a result of Thistlethwaite (1988), but in general one needs colored Tutte polynomials, as introduced by Bollobas and Riordan (1999). Knots and links can be presented as labeled planar graphs. The tree width of a link L is deened as the tree width of its graphical presentation D(L) as crossing diagrams. We show that the colored Tutte polynomial can be computed in polynomial time for graphs of tree width at most k. Hence, for (not necessarily alternating) knots and links of tree width at most k, even the Kauuman square bracket L] introduced by Bollobas and Riordan can be computed in polynomial time. In particular, the classical Kauuman bracket hLi and the Jones polynomial of links of tree width at most k are computable in polynomial time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subset Glauber Dynamics on Graphs, Hypergraphs and Matroids of Bounded Tree-Width

Motivated by the ‘subgraphs world’ view of the ferromagnetic Ising model, we analyse the mixing times of Glauber dynamics based on subset expansion expressions for classes of graph, hypergraph and matroid polynomials. With a canonical paths argument, we demonstrate that the chains defined within this framework mix rapidly upon graphs, hypergraphs and matroids of bounded tree-width. This extends...

متن کامل

Farrell Polynomials on Graphs of Bounded Tree Width

range of the weight function on F is innnite. Nevertheless, we conjecture: Conjecture 2. On graphs of tree width at most k the frame polynomials can be computed in polynomial time. It is not yet clear how the newly introduced interlace polynomials of Arratia, Bollobb as and Sorkin ABS] t into our framework. For for graphs representing link diagrams the are also computable from the Kauuman brack...

متن کامل

The Interlace Polynomial : a New Graph Polynomialrichard Arratia

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and sp...

متن کامل

Computing the Tutte Polynomial on Graphs of Bounded Clique-Width

The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs without induced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time exp O(n) ) for compu...

متن کامل

Rapid Mixing of Subset Glauber Dynamics on Graphs of Bounded Tree-Width

Motivated by the ‘subgraphs world’ view of the ferromagnetic Ising model, we develop a general approach to studying mixing times of Glauber dynamics based on subset expansion expressions for a class of graph polynomials. With a canonical paths argument, we demonstrate that the chains defined within this framework mix rapidly upon graphs of bounded tree-width. This extends known results on rapid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000