Discrete Cutting Force Model for 5-Axis Milling with Arbitrary Engagement and Feed Direction
نویسندگان
چکیده
5-axis machining operations bring new challenges for predicting cutting forces. Complex tool workpiece engagements and tool orientations make it difficult to adapt 3-axis process models for 5-axis operations. A new model is developed to predict cutting forces with arbitrary tool/workpiece engagement and tool feed direction. A discretization approach is used, in which the tool is composed of multiple cutting elements. Each element is processed to determine its effect on cutting forces, and global forces are determined by combining the elemental effects. Cutting tests are conducted to verify force predictions, where the tool/workpiece engagement is provided through a geometric software application. © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the scientific committee of The 16th CIRP Conference on Modelling of Machining Operations, in the person of the Conference Chairs Prof. J.C. Outeiro and Prof. G. Poulachon.
منابع مشابه
An Instantaneous Rigid Force Model For 3-Axis Ball-End Milling Of Sculptured Surfaces
An instantaneous rigid force model for prediction of cutting forces in ball-end milling of sculptured surfaces is presented in this paper. A commercially available geometric engine is used to represent the cutting edge, cutter and updated part geometries. The cutter used in this work is an insert type ball-end mill. Intersecting an inclined plane with the cutter ball nose generates the cutting...
متن کاملEmploying helical milling to Aluminium with MQL has shown in improvement in geometrical accuracy and a reduction inburr formation and lower cutting temperature and a smaller cutting force comparing to drilling operations
Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion...
متن کاملCutting Force Prediction in End Milling Process of AISI 304 Steel Using Solid Carbide Tools
In the present study, an attempt has been made to experimentally investigate the effects of cutting parameters on cutting force in end milling of AISI 304 steel with solid carbide tools. Experiments were conducted based on four factors and five level central composite rotatable design. Mathematical model has been developed to predict the cutting forces in terms of cutting parameters such as he...
متن کاملAnalytical Cutting Forces Model of Helical Milling Operations
Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion...
متن کاملNumerical Modeling and Multi Objective Optimization of Face Milling of AISI 304 Steel
There is a requirement to find accurate parameters to accomplish precise dimensional accuracy, excellent surface integrity and maximum MRR. This work studies the influence of various cutting parameters on output parameters like Cutting force, Surface roughness, Flatness, and Material removal rate while face milling. A detailed finite element model was developed to simulate the face milling proc...
متن کامل