A liquid-crystal model for friction.

نویسندگان

  • C H A Cheng
  • L H Kellogg
  • S Shkoller
  • D L Turcotte
چکیده

Rate-and-state friction is an empirical approach to the behavior of a frictional surface. We use a nematic liquid crystal in a channel between two parallel planes to model frictional sliding. Nematic liquid crystals model a wide variety of physical phenomena in systems that rapidly switch between states; they are well studied and interesting examples of anisotropic non-Newtonian fluids, characterized by the orientational order of a director field SE pointing arrow(x,t) interacting with the the velocity field u(x,t). To model frictional sliding, we introduce a nonlinear viscosity that changes as a function of the director field orientation; the specific choice of viscosity function determines the behavior of the system. In response to sliding of the top moving plane, the fluid undergoes a rapid increase in resistance followed by relaxation. Strain is localized within the channel. The director field plays a role analogous to the state variable in rate-and-state friction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Friction drag on a particle moving in a nematic liquid crystal.

The flow of a liquid crystal around a particle does not only depend on its shape and the viscosity coefficients but also on the direction of the molecules. We studied the resulting drag force on a sphere moving in a nematic liquid crystal (MBBA) in a low Reynold’s number approach for a fixed director field (low Ericksen number regime) using the computational artificial compressibility method. T...

متن کامل

Correlations and Predictions of THF + 2-Alkanol Binary Mixtures Behaviour by PC-SAFT Model and Friction Theory

In this article the behavior of tetrahydrofuran (THF) + 2-alkanol namely 2-propanol, 2-butanol, 2-pentanol, 2-hexanol and 2-heptanol binary mixtures through the density and viscosity measurements have been studied as a function of composition and within the temperature range of 293.15–313.15 K. The excess molar volume, isobaric thermal expansivity, partial molar volumes, and viscosity deviation...

متن کامل

Friction and scratch resistance of polymer liquid crystals: Effects of magnetic field orientation

We have studied PET/0.6 PHB, an alternating copolymer in which PET is poly(ethylene terephthalate) and PHB is p-hydroxybenzoic acid with the mole fraction of 0.6 PHB. It is a longitudinal polymer liquid crystal (PLC) with the LC sequences in the main chain and oriented along the chain backbone. Material not subjected to the magnetic field, specimens oriented along and perpendicularly to the flu...

متن کامل

Identification of nonmonotonic behaviors and stick-slip transition in liquid crystal polymers.

The recent identification of shear-induced phases in the isotropic melts of liquid crystal polymers shows that these materials are expected to display original nonlinear behaviors. We have investigated the flow behavior of a nematic sidechain polymer above its isotropic-nematic transition temperature. Nonlinear rheology and birefringence measurements indicate the appearance, above a critical sh...

متن کامل

Comparison of Friction Characteristics on TN and VA Mode Alignment Films with Friction Force Microscopy

Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 23  شماره 

صفحات  -

تاریخ انتشار 2008