Completions to sparse shape functions for triangular and tetrahedral p-FEM

نویسندگان

  • Sven Beuchler
  • Veronika Pillwein
چکیده

holds for all v ∈ H Γ1(Ω). Problem (1) will be discretized by means of the hp-version of the finite element method using triangular/tetrahedral elements △s, s = 1, . . . , nel, see e.g. Schwab [1998], Solin et al. [2003]. Let △̂d, d = 2, 3 be the reference triangle (tetrahedron) and Fs : △̂ → △s be the (possibly nonlinear) isoparametric mapping to the element △s. We define the finite element space M := {u ∈ H Γ1(Ω), u |△s= ũ(F s (x, y, z)), ũ ∈ Pp}, where Pp is the space of all polynomials of maximal total degree p. By Ψ = (ψ1, . . . , ψN ), we denote a basis for M. The Galerkin projection of (1) onto M leads to the linear system of algebraic finite element equations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Summation Techniques for Sparse Shape Functions in Tetrahedral hp-FEM

This paper considers the hp-finite element discretization of an elliptic boundary value problem using tetrahedral elements. The discretization uses a polynomial basis in which the number of nonzero entries per row is bounded independently of the polynomial degree. The authors present an algorithm which computes the nonzero entries of the stiffness matrix in optimal complexity. The algorithm is ...

متن کامل

Sparsity optimized high order finite element functions on simplices

This article reports several results on sparsity optimized basis functions for hp-FEM on triangular and tetrahedral finite element meshes obtained within the Special Research Program “Numerical and Symbolic Scientific Computing” and within the Doctoral Program “Computational Mathematics” both supported by the Austrian Science Fund FWF under the grants SFB F013 and DK W1214, respectively. We giv...

متن کامل

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

P-30: Developmental Capacity and Blastocyst Formation of Thawed Tetrahedral Versus Non-Tetrahedral 4-cell Stage Mouse Embryos After Vitrification

Background: It was reported in a literature that approximately one third of the 4-cell stage embryos did not exhibit a tetrahedral shape. Non-tetrahedral embryos showed a lower in vitro developmental potential than tetrahedral embryos. Recently vitrification technology has been widely employed for embryo cryopreservation. The objective of this study was to prove our hypothesis that vitrified - ...

متن کامل

On the Analysis of FGM Beams: FEM with Innovative Element

This paper aims at presenting a new efficient element for free vibration and instability analysis of Axially Functionally Graded Materials (FGMs) non-prismatic beams using Finite Element Method (FEM). Using concept of Basic Displacement Functions (BDFs), two- node element extends  to three-node element for obtaining much more exact results using FEM. First, BDFs are introduced and computed usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007