Nanostructures of LiBH4: a density-functional study.

نویسندگان

  • P Vajeeston
  • P Ravindran
  • H Fjellvåg
چکیده

The phase stability and electronic structure of alpha- LiBH(4)-derived nanostructures and possible low energy surfaces of thin films have been investigated using the ab initio projected augmented plane wave method. Structural optimizations based on total energy calculations predicted that, for the alpha- LiBH(4) phase, the (010) surface is the most stable of the possible low-energy surfaces. The predicted critical sizes of the nano-cluster and nano-whisker for alpha- LiBH(4) are 1.75 and 1.5 nm, respectively. Similarly, the bond distances in the surfaces of a nano-whisker are found to be higher than that in the bulk material. The calculated hydrogen site energies suggest that it is relatively easier to remove hydrogen from the surface of the clusters and nano-whiskers than from bulk crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical and Experimental Study of LiBH4-LiCl Solid Solution

Anion substitution is at present one of the pathways to destabilize metal borohydrides for solid state hydrogen storage. In this work, a solid solution of LiBH4 and LiCl is studied by density functional theory (DFT) calculations, thermodynamic modeling, X-ray diffraction, and infrared spectroscopy. It is shown that Cl substitution has minor effects on thermodynamic stability of either the ortho...

متن کامل

Study of 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, using density functional theory

High Energy Materials is a term that is used for explosives, propellants and pyrotechnics. Explosives are used for military applications. 5-Picrylamino-1,2,3,4-tetrazole(PAT) is an explosive substance. In this study the reactions of the 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, with density function...

متن کامل

Study of 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, using density functional theory

High Energy Materials is a term that is used for explosives, propellants and pyrotechnics. Explosives are used for military applications. 5-Picrylamino-1,2,3,4-tetrazole(PAT) is an explosive substance. In this study the reactions of the 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, with density function...

متن کامل

Exploration of the adsorption of caffeine molecule on the TiO2 nanostructures: A density functional theory study

The first principles were calculated to study the adsorption behaviors of caffeine molecules on the pristineand N-doped TiO2 anatase nanoparticles. Both oxygen and nitrogen in the caffeine molecule can reactstrongly with TiO2 nanoparticle. Thus, the binding sites were located on the oxygen or nitrogen atom ofthe caffeine, while the binding site of the TiO2 nanoparticle occurs ...

متن کامل

Calculation of Thermodynamic Parameters of [2.4.6] Three Nitro Toluene (TNT) with Nanostructures of Fullerene and Boron Nitride Nano-cages over Different Temperatures, Using Density Functional Theory

In this study explosive substance [2.4.6] three Nitro Toluene (TNT) was attached with nanostructures of fullerene (C24) and boron nitride nano-cages (B12N12). After that using B3LYP (Becke, three-parameter, Lee-Yang-Parr), a method from density functional theory (DFT), thermodynamic parameters of TNT with foregoing nanostructures, in different conditions of temperature, were computed. To this a...

متن کامل

A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride

Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 27  شماره 

صفحات  -

تاریخ انتشار 2009