Use of the melting curve assay as a means for high-throughput quantification of Illumina sequencing libraries

نویسندگان

  • Hiroshi Shinozuka
  • John W. Forster
چکیده

Background. Multiplexed sequencing is commonly performed on massively parallel short-read sequencing platforms such as Illumina, and the efficiency of library normalisation can affect the quality of the output dataset. Although several library normalisation approaches have been established, none are ideal for highly multiplexed sequencing due to issues of cost and/or processing time. Methods. An inexpensive and high-throughput library quantification method has been developed, based on an adaptation of the melting curve assay. Sequencing libraries were subjected to the assay using the Bio-Rad Laboratories CFX Connect(TM) Real-Time PCR Detection System. The library quantity was calculated through summation of reduction of relative fluorescence units between 86 and 95 °C. Results.PCR-enriched sequencing libraries are suitable for this quantification without pre-purification of DNA. Short DNA molecules, which ideally should be eliminated from the library for subsequent processing, were differentiated from the target DNA in a mixture on the basis of differences in melting temperature. Quantification results for long sequences targeted using the melting curve assay were correlated with those from existing methods (R (2) > 0.77), and that observed from MiSeq sequencing (R (2) = 0.82). Discussion.The results of multiplexed sequencing suggested that the normalisation performance of the described method is equivalent to that of another recently reported high-throughput bead-based method, BeNUS. However, costs for the melting curve assay are considerably lower and processing times shorter than those of other existing methods, suggesting greater suitability for highly multiplexed sequencing applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of R882 Mutations in DNMT3A Gene in Acute Myeloid Leukemia: A Method Comparison Study

Background: Somatic mutations in the hotspot region of the DNA-methyltransferase 3A (DNMT3A) gene were recurrently identified in acute myeloid leukemia (AML). It is believed that DNMT3A mutations confer an adverse prognosis for AML patients. These lines of evidence support the need for a rapid and cost-efficient method for the detection of these mutations. The present study aimed to establish h...

متن کامل

Comparison of cattle BoLA-DRB3 typing by PCR-RFLP, direct sequencing, and high-resolution DNA melting curve analysis

Major histocompatibility complex (MHC) represents an important genetic marker for manipulation to improve the health and productivity of cattle. It is closely associated with numerous disease susceptibilities and immune responses. Bovine MHC, also called bovine leukocyte antigen (BoLA), is considered as a suitable marker for genetic diversity studies. In cattle, most of the polymorphisms are lo...

متن کامل

Tips for preparing mRNA-Seq libraries from poly(A)+ mRNA for Illumina transcriptome high-throughput sequencing.

Many investigators who do high-throughput sequencing of mRNA (mRNA-Seq) use kits for library preparation purchased from Illumina. Recognizing that these kits are continually being updated and improved, we provide here some background information, tips, and troubleshooting advice for the kits available at the time of this writing.

متن کامل

Improved workflows for high throughput library preparation using the transposome-based nextera system

BACKGROUND The Nextera protocol, which utilises a transposome based approach to create libraries for Illumina sequencing, requires pure DNA template, an accurate assessment of input concentration and a column clean-up that limits its applicability for high-throughput sample preparation. We addressed the identified limitations to develop a robust workflow that supports both rapid and high-throug...

متن کامل

Quantification and Optimization of Candida albicans DNA in Blood Samples Using Real- Time PCR

Background: Candida albicans (C. albicans) is a major cause of candidaemia in people with impaired immunity. Blood culture is a “gold standard” for candidaemia detection but is time-consuming and relatively insensitive. We established a real-time PCR assay for C. albicans detection in blood by LightCycler PCR and melting curve analysis. Methods: Five milliliter blood samples from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016