Geometry based heuristics for unit disk graphs
نویسندگان
چکیده
Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP-hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring and minimum dominating set. We also present an on-line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and to intersection graphs of higher dimensional regular objects.
منابع مشابه
Simple heuristics for unit disk graphs
Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP-hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring and minimum dominating set. We also present an on-line coloring heuristic which achieves a compe...
متن کاملThe number of disk graphs
A disk graph is the intersection graph of disks in the plane, and a unit disk graph is the intersection graph of unit radius disks in the plane. We give upper and lower bounds on the number of labelled unit disk and disk graphs on n vertices. We show that the number of unit disk graphs on n vertices is n · α(n) and the number of disk graphs on n vertices is n · β(n), where α(n) and β(n) are Θ(1...
متن کاملMaximum Area Independent Sets in Disk Intersection Graphs
Maximum Independent Set (MIS) and its relative Maximum Weight Independent Set (MWIS) are well-known problems in combinatorial optimization; they are NP-hard even in the geometric setting of unit disk graphs. In this paper, we study the Maximum Area Independent Set (MAIS) problem, a natural restricted version of MWIS in disk intersection graphs where the weight equals the disk area. We obtain: (...
متن کاملPolynomial Kernels for Hard Problems on Disk Graphs
Kernelization is a powerful tool to obtain fixed-parameter tractable algorithms. Recent breakthroughs show that many graph problems admit small polynomial kernels when restricted to sparse graph classes such as planar graphs, bounded-genus graphs or H-minor-free graphs. We consider the intersection graphs of (unit) disks in the plane, which can be arbitrarily dense but do exhibit some geometric...
متن کاملConstant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs
For a given graph with weighted vertices, the goal of the minimum-weight dominating set problem is to compute a vertex subset of smallest weight such that each vertex of the graph is contained in the subset or has a neighbor in the subset. A unit disk graph is a graph in which each vertex corresponds to a unit disk in the plane and two vertices are adjacent if and only if their disks have a non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/math/9409226 شماره
صفحات -
تاریخ انتشار 1994