Pharmacokinetics and Metabolism of Delamanid, a Novel Anti-Tuberculosis Drug, in Animals and Humans: Importance of Albumin Metabolism In Vivo.

نویسندگان

  • Katsunori Sasahara
  • Yoshihiko Shimokawa
  • Yukihiro Hirao
  • Noriyuki Koyama
  • Kazuyoshi Kitano
  • Masakazu Shibata
  • Ken Umehara
چکیده

Delamanid, a new anti-tuberculosis drug, is metabolized to M1, a unique metabolite formed by cleavage of the 6-nitro-2,3-dihydroimidazo[2,1-b] oxazole moiety, in plasma albumin in vitro. The metabolic activities in dogs and humans are higher than those in rodents. In this study, we characterized the pharmacokinetics and metabolism of delamanid in animals and humans. Eight metabolites (M1-M8) produced by cleavage of the imidazooxazole moiety of delamanid were identified in the plasma after repeated oral administration by liquid chromatography-mass spectrometry analysis. Delamanid was initially catalyzed to M1 and subsequently metabolized by three separate pathways, which suggested that M1 is a crucial starting point. The major pathway in humans was hydroxylation of the oxazole moiety of M1 to form M2 and then successive oxidation to the ketone form (M3) mainly by CYP3A4. M1 had the highest exposure among the eight metabolites after repeated oral dosing in humans, which indicated that M1 was the major metabolite. The overall metabolism of delamanid was qualitatively similar across nonclinical species and humans but was quantitatively different among the species. After repeated administration, the metabolites had much higher concentrations in dogs and humans than in rodents. The in vitro metabolic activity of albumin on delamanid probably caused the species differences observed. We determined that albumin metabolism is a key component of the pharmacokinetics and metabolism of delamanid. Nonhepatic formation of M1 and multiple separate pathways for metabolism of M1 suggest that clinically significant drug-drug interactions with delamanid and M1 are limited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dmd064527 1267..1276

Delamanid, a new anti-tuberculosis drug, is metabolized to M1, a unique metabolite formed by cleavage of the 6-nitro-2,3dihydroimidazo[2,1-b] oxazole moiety, in plasma albumin in vitro. The metabolic activities in dogs and humans are higher than those in rodents. In this study, we characterized the pharmacokinetics and metabolism of delamanid in animals and humans. Eight metabolites (M1–M8) pro...

متن کامل

Metabolic Mechanism of Delamanid, a New Anti-Tuberculosis Drug, in Human Plasma.

The metabolism of delamanid (OPC-67683, Deltyba), a novel treatment of multidrug-resistant tuberculosis, was investigated in vitro using plasma and purified protein preparations from humans and animals. Delamanid was rapidly degraded by incubation in the plasma of all species tested at 37°C, with half-life values (hours) of 0.64 (human), 0.84 (dog), 0.87 (rabbit), 1.90 (mouse), and 3.54 (rat). ...

متن کامل

A New Model to Describe the Single-dose Pharmacokinetics of Bevacizumab and Predict Its Multiple-Dose Pharmacokinetics in Beagle Dogs

Complex pharmacokinetic (PK) properties including nonlinear elimination were encountered by some monoclonal antibodies (mAbs), and classic compartment models sometimes failed to appropriately describe those properties. In this work, a new model was built on a comprehensive analysis of the complex elimination of mAbs. This new model was firstly utilized to fit with the single-dose plasma concent...

متن کامل

A New Model to Describe the Single-dose Pharmacokinetics of Bevacizumab and Predict Its Multiple-Dose Pharmacokinetics in Beagle Dogs

Complex pharmacokinetic (PK) properties including nonlinear elimination were encountered by some monoclonal antibodies (mAbs), and classic compartment models sometimes failed to appropriately describe those properties. In this work, a new model was built on a comprehensive analysis of the complex elimination of mAbs. This new model was firstly utilized to fit with the single-dose plasma concent...

متن کامل

Dmd064550 1277..1283

The metabolism of delamanid (OPC-67683, Deltyba), a novel treatment of multidrug-resistant tuberculosis, was investigated in vitro using plasma and purified protein preparations from humans and animals. Delamanid was rapidly degraded by incubation in the plasma of all species tested at 37 C, with half-life values (hours) of 0.64 (human), 0.84 (dog), 0.87 (rabbit), 1.90 (mouse), and 3.54 (rat). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 43 8  شماره 

صفحات  -

تاریخ انتشار 2015