Cationic shell-cross-linked knedel-like (cSCK) nanoparticles for highly efficient PNA delivery.

نویسندگان

  • Huafeng Fang
  • Ke Zhang
  • Gang Shen
  • Karen L Wooley
  • John-Stephen A Taylor
چکیده

Peptide nucleic acids have a number of features that make them an ideal platform for the development of in vitro biological probes and tools. Unfortunately, their inability to pass through membranes has limited their in vivo application as diagnostic and therapeutic agents. Herein, we describe the development of cationic shell-cross-linked knedel-like (cSCK) nanoparticles as highly efficient vehicles for the delivery of PNAs into cells, either through electrostatic complexation with a PNA * ODN hybrid, or through a bioreductively cleavable disulfide linkage to a PNA. These delivery systems are better than the standard Lipofectamine/ODN-mediated method and much better than the Arg(g)-mediated method for PNA delivery in HeLa cells, showing lower toxicity and higher bioactivity. The cSCKs were also found to facilitate both endocytosis and endosomal release of the PNAs, while themselves remaining trapped in the endosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging mRNA expression levels in living cells with PNA·DNA binary FRET probes delivered by cationic shell-crosslinked nanoparticles.

Optical imaging of gene expression through the use of fluorescent antisense probes targeted to the mRNA has been an area of great interest. The main obstacles to developing highly sensitive antisense fluorescent imaging agents have been the inefficient intracellular delivery of the probes and high background signal from unbound probes. Binary antisense probes have shown great promise as mRNA im...

متن کامل

Antisense peptide nucleic acid-functionalized cationic nanocomplex for in vivo mRNA detection.

Acute lung injury (ALI) is a complex syndrome with many aetiologies, resulting in the upregulation of inflammatory mediators in the host, followed by dyspnoea, hypoxemia and pulmonary oedema. A central mediator is inducible nitric oxide synthase (iNOS) that drives the production of NO and continued inflammation. Thus, it is useful to have diagnostic and therapeutic agents for targeting iNOS exp...

متن کامل

Imaging mRNA Expression in Live Cells via PNA·DNA Strand Displacement-Activated Probes

Probes for monitoring mRNA expression in vivo are of great interest for the study of biological and biomedical problems, but progress has been hampered by poor signal to noise and effective means for delivering the probes into live cells. Herein we report a PNA·DNA strand displacement-activated fluorescent probe that can image the expression of iNOS (inducible nitric oxide synthase) mRNA, a mar...

متن کامل

Shell crosslinked knedel-like nanoparticles for delivery of cisplatin: effects of crosslinking.

Polymeric micelles and shell crosslinked knedel-like (SCK) nanoparticles were loaded with up to 48% (w/w) cisplatin. These spherical cisplatin-loaded nanoparticles displayed sustained platinum release over 5 days in PBS, enhanced stability over free cisplatin in aqueous milieu, and significant antitumor activity in vitro against two cancer cell lines.

متن کامل

Fluorogenic 1,3-dipolar cycloaddition within the hydrophobic core of a shell cross-linked nanoparticle.

Using either nitroxide mediated polymerization (NMP) or reversible addition fragmentation transfer (RAFT) techniques, novel block copolymers that present terminal acetylenes, in the side chain of the styrenic block, were obtained with narrow polydispersities and targeted molecular weights. For the conversion of these acetylene-functionalized polymers to amphiphilic block copolymers, RAFT techni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmaceutics

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2009