Locally constrained graph homomorphisms - structure, complexity, and applications
نویسندگان
چکیده
A graph homomorphism is an edge preserving vertex mapping between two graphs. Locally constrained homomorphisms are those that behave well on the neighborhoods of vertices — if the neighborhood of any vertex of the source graph is mapped bijectively (injectively, surjectively) to the neighborhood of its image in the target graph, the homomorphism is called locally bijective (injective, surjective, respectively). We show that this view unifies issues studied before from different perspectives and under different names, such as graph covers, distance constrained graph labelings, or role assignments. Our survey provides an overview of applications, complexity results, related problems, and historical notes on locally constrained graph homomorphisms.
منابع مشابه
Locally constrained graph homomorphisms and equitable partitions
We explore the connection between locally constrained graph homomorphisms and degree matrices arising from an equitable partition of a graph. We provide several equivalent characterizations of degree matrices. As a consequence we can efficiently check whether a given matrix M is a degree matrix of some graph and also compute the size of a smallest graph for which it is a degree matrix in polyno...
متن کاملGraph Labelings Derived from Models in Distributed Computing
We discuss 11 known basic models of distributed computing: four message-passing models that differ by the (non)existence of port-numbers and a hierarchy of seven local computations models. In each of these models, we study the computational complexity of the decision problems if the leader election and if the naming problem can be solved on a given network. It is already known that these two de...
متن کاملLocally Constrained Homomorphisms on Graphs of Bounded Treewidth and Bounded Degree
A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even w...
متن کاملCounting Restricted Homomorphisms via Möbius Inversion over Matroid Lattices
We present a framework for the complexity classification of parameterized counting problems that can be formulated as the summation over the numbers of homomorphisms from small pattern graphs H1, . . . ,H` to a big host graph G with the restriction that the coefficients correspond to evaluations of the Möbius function over the lattice of a graphic matroid. This generalizes the idea of Curticape...
متن کاملGraph homomorphisms and components of quotient graphs
We study how the number c(X) of components of a graph X can be expressed through the number and properties of the components of a quotient graph X/∼ . We partially rely on classic qualifications of graph homomorphisms such as locally constrained homomorphisms and on the concept of equitable partition and orbit partition. We introduce the new definitions of pseudo-covering homomorphism and of co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Science Review
دوره 2 شماره
صفحات -
تاریخ انتشار 2008