Adult neural stem cell fate is determined by thyroid hormone activation of mitochondrial metabolism
نویسندگان
چکیده
OBJECTIVE In the adult brain, neural stem cells (NSCs) located in the subventricular zone (SVZ) produce both neuronal and glial cells. Thyroid hormones (THs) regulate adult NSC differentiation towards a neuronal phenotype, but also have major roles in mitochondrial metabolism. As NSC metabolism relies mainly on glycolysis, whereas mature cells preferentially use oxidative phosphorylation, we studied how THs and mitochondrial metabolism interact on NSC fate determination. METHODS We used a mitochondrial membrane potential marker in vivo to analyze mitochondrial activity in the different cell types in the SVZ of euthyroid and hypothyroid mice. Using primary adult NSC cultures, we analyzed ROS production, SIRT1 expression, and phosphorylation of DRP1 (a mitochondrial fission mediator) as a function of TH availability. RESULTS We observed significantly higher mitochondrial activity in cells adopting a neuronal phenotype in vivo in euthyroid mice. However, prolonged hypothyroidism reduced not only neuroblast numbers but also their mitochondrial activity. In vitro studies showed that TH availability favored a neuronal phenotype and that blocking mitochondrial respiration abrogated TH-induced neuronal fate determination. DRP1 phosphorylation was preferentially activated in cells within the neuronal lineage and was stimulated by TH availability. CONCLUSIONS These results indicate that THs favor NSC fate choice towards a neuronal phenotype in the adult mouse SVZ through effects on mitochondrial metabolism.
منابع مشابه
High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملThyroid Hormone‐Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis
In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of...
متن کاملMitochondrial Metabolism - Mediated Regulation of Adult Neurogenesis
The life-long generation of new neurons from radial glia-like neural stem cells (NSCs) is achieved through a stereotypic developmental sequence that requires precise regulatory mechanisms to prevent exhaustion or uncontrolled growth of the stem cell pool. Cellular metabolism is the new kid on the block of adult neurogenesis research and the identity of stage-specific metabolic programs and thei...
متن کاملIsolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells
Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...
متن کاملEcdysone and Mediator Change Energy Metabolism to Terminate Proliferation in Drosophila Neural Stem Cells
Stem cells are highly abundant during early development but become a rare population in most adult organs. The molecular mechanisms causing stem cells to exit proliferation at a specific time are not well understood. Here, we show that changes in energy metabolism induced by the steroid hormone ecdysone and the Mediator initiate an irreversible cascade of events leading to cell-cycle exit in Dr...
متن کامل