Oxidized Low-density Lipoprotein- and Lysophosphatidylcholine-induced Ca Mobilization in Human Endothelial Cells.

نویسندگان

  • Moon Young Kim
  • Guo Hua Liang
  • Ji Aee Kim
  • Soo Seung Choi
  • Shinku Choi
  • Suk Hyo Suh
چکیده

The effects of oxidized low-density lipoprotein (OxLDL) and its major lipid constituent lysophosphatidylcholine (LPC) on Ca(2+) entry were investigated in cultured human umbilical endothelial cells (HUVECs) using fura-2 fluorescence and patch-clamp methods. OxLDL or LPC increased intracellular Ca(2+) concentration ([Ca(2+)](i)), and the increase of [Ca(2+)](i) by OxLDL or by LPC was inhibited by La(3+) or heparin. LPC failed to increase [Ca(2+)](i) in the presence of an antioxidant tempol. In addition, store-operated Ca(2+) entry (SOC), which was evoked by intracellular Ca(2+) store depletion in Ca(2+)-free solution using the sarcoplasmic reticulum Ca(2+) pump blocker, 2, 5-di-t-butyl-1, 4-benzohydroquinone (BHQ), was further enhanced by OxLDL or by LPC. Increased SOC by OxLDL or by LPC was inhibited by U73122. In voltage-clamped cells, OxLDL or LPC increased [Ca(2+)](i) and simultaneously activated non-selective cation (NSC) currents. LPC-induced NSC currents were inhibited by 2-APB, La(3+) or U73122, and NSC currents were not activated by LPC in the presence of tempol. Furthermore, in voltage-clamped HUVECs, OxLDL enhanced SOC and evoked outward currents simultaneously. Clamping intracellular Ca(2+) to 1 microM activated large-conductance Ca(2+)-activated K(+) (BK(Ca)) current spontaneously, and this activated BK(Ca) current was further enhanced by OxLDL or by LPC. From these results, we concluded that OxLDL or its main component LPC activates Ca(2+)-permeable Ca(2+)-activated NSC current and BK(Ca) current simultaneously, thereby increasing SOC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells

Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a m...

متن کامل

Lysophosphatidylcholine inhibits bradykinin-induced phosphoinositide hydrolysis and calcium transients in cultured bovine aortic endothelial cells.

Vascular endothelium, which produces endothelium-derived relaxing and constricting factors, plays an important role in regulating the vascular tone. We recently demonstrated that oxidized low density lipoprotein inhibited endothelium-dependent relaxation and that lysophosphatidylcholine accumulated during the oxidative modification of low density lipoprotein was the essential substance for the ...

متن کامل

The Effect of Adiponectin on Osteonectin Gene Expression by Oxidized Low Density Lipoprotein-Treated Vascular Smooth Muscle Cells

Osteonectin is a bone- associated protein involved in vascular calcification. Adiponectin may protect against cardiovascular disease but possible effects on vascular calcification have been poorly studied. The aim of this study was to investigate the modulatory effect of adiponectin on oxidized low density lipoprotein (oxLDL)- induced expression of osteonectin in human aorta vascular smooth mus...

متن کامل

Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells

Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...

متن کامل

Inhibition by cholesterol oxides of NO release from human vascular endothelial cells.

Recent studies have demonstrated that, unlike cholesterol, cholesterol oxidized at position 7 can reduce the maximal endothelium-dependent relaxation of isolated rabbit aortas (Circulation. 1997;95:723-731). The aim of the current study was to determine whether cholesterol oxides reduce the release of nitric oxide (NO) from human umbilical vein endothelial cells (HUVECs). The amount of NO relea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2009