Partial Face Matching between Near Infrared and Visual Images in MBGC Portal Challenge
نویسندگان
چکیده
The latest multi-biometric grand challenge (MBGC 2008) sets up a new experiment in which near infrared (NIR) face videos containing partial faces are used as a probe set and the visual (VIS) images of full faces are used as the target set. This is challenging for two reasons: (1) it has to deal with partially occluded faces in the NIR videos, and (2) the matching is between heterogeneous NIR and VIS faces. Partial face matching is also a problem often confronted in many video based face biometric applications. In this paper, we propose a novel approach for solving this challenging problem. For partial face matching, we propose a local patch based method to deal with partial face data. For heterogeneous face matching, we propose the philosophy of enhancing common features in heterogeneous images while reducing differences. This is realized by using edge-enhancing filters, which at the same time is also beneficial for partial face matching. The approach requires neither learning procedures nor training data. Experiments are performed using the MBGC portal challenge data, comparing with several known state-of-the-arts methods. Extensive results show that the proposed approach, without knowing statistical characteristics of the subjects or data, outperforms the methods of contrast significantly, with ten-fold higher verification rates at FAR of 0.1%.
منابع مشابه
Automatic Partial Face Alignment in NIR Video Sequences
Face recognition with partial face images is an important problem in face biometrics. The necessity can arise in not so constrained environments such as in surveillance video, or portal video as provided in Multiple Biometrics Grand Challenge (MBGC). Face alignment with partial face images is a key step toward this challenging problem. In this paper, we present a method for partial face alignme...
متن کاملOverview of the Multiple Biometrics Grand Challenge
The goal of the Multiple Biometrics Grand Challenge (MBGC) is to improve the performance of face and iris recognition technology from biometric samples acquired under unconstrained conditions. The MBGC is organized into three challenge problems. Each challenge problem relaxes the acquisition constraints in different directions. In the Portal Challenge Problem, the goal is to recognize people fr...
متن کاملFace Matching Between Near Infrared and Visible Light Images
In many applications, such as E-Passport and driver’s license, the enrollment of face templates is done using visible light (VIS) face images. Such images are normally acquired in controlled environment where the lighting is approximately frontal. However, Authentication is done in variable lighting conditions. Matching of faces in VIS images taken in different lighting conditions is still a bi...
متن کاملDetermination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares
The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...
متن کاملVASIR: An Open-Source Research Platform for Advanced Iris Recognition Technologies
The performance of iris recognition systems is frequently affected by input image quality, which in turn is vulnerable to less-than-optimal conditions due to illuminations, environments, and subject characteristics (e.g., distance, movement, face/body visibility, blinking, etc.). VASIR (Video-based Automatic System for Iris Recognition) is a state-of-the-art NIST-developed iris recognition soft...
متن کامل