Neonatal CX26 removal impairs neocortical development and leads to elevated anxiety.
نویسندگان
چکیده
Electrical coupling between excitatory neurons in the neocortex is developmentally regulated. It is initially prominent but eliminated at later developmental stages when chemical synapses emerge. However, it remains largely unclear whether early electrical coupling networks broadly contribute to neocortical circuit formation and animal behavior. Here, we report that neonatal electrical coupling between neocortical excitatory neurons is critical for proper neuronal development, synapse formation, and animal behavior. Conditional deletion of Connexin 26 (CX26) in the superficial layer excitatory neurons of the mouse neocortex around birth significantly reduces spontaneous firing activity and the frequency and size of spontaneous network oscillations at postnatal day 5-6. Moreover, CX26-conditional knockout (CX26-cKO) neurons tend to have simpler dendritic trees and lower spine density compared with wild-type neurons. Importantly, early, but not late, postnatal deletion of CX26, decreases the frequency of miniature excitatory postsynaptic currents (mEPSCs) in both young and adult mice, whereas miniature inhibitory postsynaptic currents (mIPSCs) were unaffected. Furthermore, CX26-cKO mice exhibit increased anxiety-related behavior. These results suggest that electrical coupling between excitatory neurons at early postnatal stages is a critical step for neocortical development and function.
منابع مشابه
Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملEffects of neonatal maternal deprivation and postweaning environmental complexity on dendritic morphology of prefrontal pyramidal neurons in the rat.
It has been reported that periodic maternal separation in rats leads to a variety of endure behavioral, neurochemical and microstructural sequelae associated with the pathophysiology of anxiety disorders. Since it has been proposed that these changes might be permanent, we examined whether environmental complexity aid to recover the structural dendritic impairment induced by neonatal maternal d...
متن کاملChronic prenatal hypoxia impairs cochlear development, a mechanism involving connexin26 expression and promoter methylation
Chronic prenatal hypoxia is a damaging to fetal development and may have various consequences, including hearing loss. Connexin 26 (Cx26) is one of the major protein subunits required for gap junction formation, and has an important role in maintaining homeostasis in the cochlea and normal hearing. Cx26 mutation and expression abnormality are closely associated with inherited nonsyndromic deafn...
متن کاملMammary Gland Specific Knockdown of the Physiological Surge in Cx26 during Lactation Retains Normal Mammary Gland Development and Function
Connexin26 (Cx26) is the major Cx protein expressed in the human mammary gland and is up-regulated during pregnancy while remaining elevated throughout lactation. It is currently unknown if patients with loss-of-function Cx26 mutations that result in hearing loss and skin diseases have a greater susceptibility to impaired breast development. To investigate if Cx26 plays a critical role in mamma...
متن کاملChronic Stress Induces Anxiety via an Amygdalar Intracellular Cascade that Impairs Endocannabinoid Signaling
Collapse of endocannabinoid (eCB) signaling in the amygdala contributes to stress-induced anxiety, but the mechanisms of this effect remain unclear. eCB production is tied to the function of the glutamate receptor mGluR5, itself dependent on tyrosine phosphorylation. Herein, we identify a novel pathway linking eCB regulation of anxiety through phosphorylation of mGluR5. Mice lacking LMO4, an en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 12 شماره
صفحات -
تاریخ انتشار 2017