A Graph Polynomial Approach to Primitivity
نویسندگان
چکیده
Recently, Tittmann et al. introduced the subgraph component polynomial and showed that its power for distinguishing graphs is quite different from the power of other graph polynomials that appear in the literature such as the matching polynomial, the Tutte polynomial, the characteristic polynomial, the chromatic polynomial, etc. The subgraph component polynomial enumerates vertex induced subgraphs in a given undirected graph with respect to the number of components. We show the use of the subgraph component polynomial to count the number of primitive partial words of a given length over an alphabet of a fixed size, which leads to a method for enumerating such partial words.
منابع مشابه
Checking the strict positivity of Kraus maps is NP-hard
Basic properties in Perron-Frobenius theory are strict positivity, primitivity, and irreducibility. Whereas for nonnegative matrices, these properties are equivalent to elementary graph properties which can be checked in polynomial time, we show that for Kraus maps the noncommutative generalization of stochastic matrices checking strict positivity (whether the map sends the cone to its interior...
متن کاملSome New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملM-polynomial and degree-based topological indices
Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملOn the Roots of Hosoya Polynomial of a Graph
Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...
متن کامل