Non-parametric seismic data recovery with curvelet frames
نویسندگان
چکیده
Seismic data recovery from data with missing traces on otherwise regular acquisition grids forms a crucial step in the seismic processing flow. For instance, unsuccessful recovery leads to imaging artifacts and to erroneous predictions for the multiples, adversely affecting the performance of multiple elimination. A non-parametric transform-based recovery method is presented that exploits the compression of seismic data volumes by recently developed curvelet frames. The elements of this transform are multidimensional and directional and locally resemble wavefronts present in the data, which leads to a compressible representation for seismic data. This compression enables us to formulate a new curvelet-based seismic data recovery algorithm through sparsity-promoting inversion. The concept of sparsity-promoting inversion is in itself not new to geophysics. However, the recent insights from the field of ‘compressed sensing’ are new since they clearly identify the three main ingredients that go into a successful formulation of a recovery problem, namely a sparsifying transform, a sampling strategy that subdues coherent aliases and a sparsity-promoting program that recovers the largest entries of the curvelet-domain vector while explaining the measurements. These concepts are illustrated with a stylized experiment that stresses the importance of the degree of compression by the sparsifying transform. With these findings, a curvelet-based recovery algorithms is developed, which recovers seismic wavefields from seismic data volumes with large percentages of traces missing. During this construction, we benefit from the main three ingredients of compressive sampling, namely the curvelet compression of seismic data, the existence of a favorable sampling scheme and the formulation of a large-scale sparsity-promoting solver based on a cooling method. The recovery performs well on synthetic as well as real data and performs better by virtue of the sparsifying property of curvelets. Our results are applicable to other areas such as global seismology.
منابع مشابه
Sparsity- and continuity-promoting seismic image recovery with curvelet frames
A nonlinear singularity-preserving solution to seismic image recovery with sparseness and continuity constraints is proposed. We observe that curvelets, as a directional frame expansion, lead to sparsity of seismic images and exhibit invariance under the normal operator of the linearized imaging problem. Based on this observation we derive a method for stable recovery of the migration amplitude...
متن کامل4255 Seismic Deconvolution Revisited with Curvelet Frames
We propose an efficient iterative curvelet-regularized deconvolution algorithm that exploits continuity along reflectors in seismic images. Curvelets are a new multiscale transform that provides sparse representations for images (such as seismic images) that comprise smooth objects separated by piece-wise smooth discontinuities. Our technique combines conjugate gradient-based convolution operat...
متن کاملHigher dimensional blue-noise sampling schemes for curvelet-based seismic data recovery
In combination with compressive sensing, a successful reconstruction scheme called Curvelet-based Recovery by Sparsitypromoting Inversion (CRSI) has been developed, and has proven to be useful for seismic data processing. One of the most important issues for CRSI is the sampling scheme, which can greatly affect the quality of reconstruction. Unlike usual regular undersampling, stochastic sampli...
متن کاملParametric studies of seismic behavior of steel frames equipped with yielding elements
Yielding elements (YE) are among those devices that not only help control structural damages, but make better seismic behavior by concentrating the frames in some removable part of the structures. YE are located at the intersection of Concentric Braced Frame (CBF) in a rectangular shape. In this paper, Seismic behavior of the frames with YE will be investigated. For this reason, 5 braced steel ...
متن کاملComparative Review of the Performance Based Design of Building Structures Using Static Non-Linear Analysis, Part A: Steel Braced Frames
The objective of this review to be submitted in two independent parts, for steel frames and for RC frames, is to compare their structural performance with respect to the proposed N2-method, and so also of the consequent convenience of using pushover methodology for the seismic analysis of these structures. A preliminary investigation is presented on a pushover analysis used for the seismic perf...
متن کامل