Least-squares finite element approximations for the Reissner-Mindlin plate

نویسندگان

  • Zhiqiang Cai
  • Xiu Ye
  • Huilong Zhang
چکیده

1Department of Mathematics, Purdue University, 1395 Mathematical Sciences Building, West Lafayette, IN 47907-1395, USA. Email: [email protected]. 2Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA. Email: [email protected]. 3MAB, CNRS UPRESA 5466, Université de Bordeaux I, 351 Cours de la Libération, 33400 Takence, France. Email: [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Squares for the Perturbed Stokes Equations and the Reissner-Mindlin Plate

In this paper, we develop two least-squares approaches for the solution of the Stokes equations perturbed by a Laplacian term. (Such perturbed Stokes equations arise from finite element approximations of the Reissner–Mindlin plate.) Both are two-stage algorithms that solve first for the curls of the rotation of the fibers and the solenoidal part of the shear strain, then for the rotation itself...

متن کامل

On Mixed Finite Element Methods for the Reissner-mindlin Plate Model

In this paper we analyze the convergence of mixed finite element approximations to the solution of the Reissner-Mindlin plate problem. We show that several known elements fall into our analysis, thus providing a unified approach. We also introduce a low-order triangular element which is optimalorder convergent uniformly in the plate thickness.

متن کامل

A Superconvergent Finite Element Scheme for the Reissner-mindlin Plate by Projection Methods

The Reissner-Mindlin model is frequently used by engineers for plates and shells of small to moderate thickness. This model is well known for its “locking” phenomenon so that many numerical approximations behave poorly when the thickness parameter tends to zero. Following the formulation derived by Brezzi and Fortin, we construct a new finite element scheme for the Reissner-Mindlin model using ...

متن کامل

Complex Wave-number Dispersion Analysis of Stabilized Finite Element Methods for Acoustic Fluid – Structure Interaction

The application of finite element methods to problems in structural acoustics ( the vibration of an elastic body coupled to an acoustic fluid medium) is considered. New stabilized methods based on the Hellinger-Reissner variational principle with a generalized least-squares modification are developed which yield improvement in accuracy over the standard Galerkin finite element method for both i...

متن کامل

An Overlapping Domain Decomposition Method for the Reissner-mindlin Plate with the Falk-tu Elements

Abstract. The Reissner-Mindlin plate theory models a thin plate with thickness t. The condition numbers of finite element approximations of this model deteriorate badly as the thickness t of the plate converges to 0. In this paper, we develop an overlapping domain decomposition method for the Reissner-Mindlin plate model discretized by the Falk-Tu elements with the convergence rate which does n...

متن کامل

A negative-norm least squares method for Reissner-Mindlin plates

In this paper a least squares method, using the minus one norm developed by Bramble, Lazarov, and Pasciak, is introduced to approximate the solution of the Reissner-Mindlin plate problem with small parameter t, the thickness of the plate. The reformulation of Brezzi and Fortin is employed to prevent locking. Taking advantage of the least squares approach, we use only continuous finite elements ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1999