Voting Principle Based on Nearest kernel classifier and Naive Bayesian classifier
نویسنده
چکیده
This paper presented a voting principle based on multiple classifiers. This voting principle was based on the naïve Bayesian classification algorithm and a new method based on nearest to class kernel classifier that was proposed. The recognition ability of each classifier to each sample is not the same. A model of each classifier was obtained by the training on the train data, which acts as basis of the voting principle. After that, They were collected to make a decision according to the majority voting. The experiment shows that the presented voting principle achieves good performance for high recognition.
منابع مشابه
Application of Machine Learning Techniques to Differential Diagnosis of Erythemato-Squamous Diseases
This paper is about the implementation of a visual tool for Differential Diagnosis of Erythemato-Squamous Diseases based on the classification algorithms; Nearest Neighbor Classifier (NN), Naive Bayesian Classifier using Normal Distribution (NBC) and Voting Feature Intervals-5 (VFI5). This tool enables the doctors to differentiate six types of ErythematoSquamous Diseases using clinical and hist...
متن کاملA Kernel-Based Semi-Naïve Bayesian Classifier Using P-Trees
A novel semi-naive Bayesian classifier is introduced that is particularly suitable to data with many attributes. The naive Bayesian classifier is taken as a starting point and correlations are reduced through joining of highly correlated attributes. Our technique differs from related work in its use of kernel-functions that systematically include continuous attributes rather than relying on dis...
متن کاملPii: S0957-4174(99)00049-4
This paper presents an expert system for differential diagnosis of erythemato-squamous diseases incorporating decisions made by three classification algorithms: nearest neighbor classifier, naive Bayesian classifier and voting feature intervals-5. This tool enables doctors to differentiate six types of erythemato-squamous diseases using clinical and histopathological parameters obtained from a ...
متن کاملEnsembles of Methods for Tweet Topic Classification
This paper describes the system we developed for IberEval 2017 on Classification Of Spanish Election Tweets (COSET) task. Our approach is based on a weighted average ensemble of five classifiers: 1) a classifier based on logistic regression; 2) a support vector machine classifier; 3) a Naive Bayes classifier for multinomial models; 4) a Guassian Naive Bayes classifier; and 5) a classifier imple...
متن کاملA New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)
Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...
متن کامل