Signals from the ventral midline and isthmus regulate the development of Brn3.0-expressing neurons in the midbrain

نویسندگان

  • Natalia Fedtsova
  • Eric E Turner
چکیده

The vertebrate midbrain consists of dorsal and ventral domains, the tectum and tegmentum, which execute remarkably different developmental programs. Tectal development is characterized by radial migration of differentiating neurons to form a laminar structure, while the tegmentum generates functionally diverse nuclei at characteristic positions along the neural axis. Here we show that neurons appearing early in the development of the tectum are characterized either by the expression of the POU-domain transcription factor Brn3.0, or by members of the Pax and LIM families. Early neurons of the rostral tegmentum co-express Brn3.0 and Lim1/2, and caudal tegmental neurons express Islet1/2. Notochord tissue or Shh-transfected epithelial cells, transplanted to the developing tectum, suppress the development of tectal neurons, and induce the differentiation of multiple tegmental cell types. The distance from the midbrain-hindbrain boundary (MHB) determines the specific markers expressed by the tegmental neurons induced in the tectum, and the transplantation of MHB tissue adjacent to the rostral tegmentum also induces caudal markers, demonstrating the role of MHB signals in determining the phenotype of these early midbrain neurons. Co-culture of isolated midbrain neuroepithelium with Shh-expressing cells demonstrates that Shh is sufficient to convert tectal neurons to a tegmental fate. In mice lacking Shh, Brn3.0- and Pax7-expressing neurons typical of the tectum develop throughout the ventral midbrain, and gene expression patterns characteristic of early tegmental development do not appear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rmst Is a Novel Marker for the Mouse Ventral Mesencephalic Floor Plate and the Anterior Dorsal Midline Cells

The availability of specific markers expressed in different regions of the developing nervous system provides a useful tool to illuminate their development, regulation and function. We have identified by expression profiling a putative non-coding RNA, Rmst, that exhibits prominent expression in the midbrain floor plate region, the isthmus and the roof plate of the anterior neural tube. At the d...

متن کامل

Neurochemistry and anatomy of the ventral medulla

The relationship between the anatomy and neurochemistry of neurons in the ventral medulla oblongata in regions that is responsible for cardiovascular, airways, and respiratory regulation was investigated. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM) were made throughout the ventral medulla in anesthetized rats. Arterial blood pressure, sympathetic nerve activity and phreni...

متن کامل

Neurochemistry and anatomy of the ventral medulla

The relationship between the anatomy and neurochemistry of neurons in the ventral medulla oblongata in regions that is responsible for cardiovascular, airways, and respiratory regulation was investigated. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM) were made throughout the ventral medulla in anesthetized rats. Arterial blood pressure, sympathetic nerve activity and phreni...

متن کامل

Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums

Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...

متن کامل

Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain.

Fibroblast growth factors (FGFs) secreted from the midbrain-rhombomere 1 (r1) boundary instruct cell behavior in the surrounding neuroectoderm. For example, a combination of FGF and sonic hedgehog (SHH) can induce the development of the midbrain dopaminergic neurons, but the mechanisms behind the action and integration of these signals are unclear. We studied how FGF receptors (FGFRs) regulate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2001