Picosecond dynamics of hydrogen bond rearrangements during phase separation of a triethylamine and water mixture.
نویسندگان
چکیده
The earliest stages of phase separation in a liquid triethylamine (TEA)-water mixture were observed using a picosecond IR laser pulse to produce a temperature jump and ultrafast Raman spectroscopy. Raman spectral changes in the water OH stretching region showed that the temperature rise induced by IR pulses equilibrated within a few tens of picoseconds. Amplitude changes in the TEA CH-stretching region of difference Raman spectra consisted of an initial faster and a subsequent slower process. The faster process within 100 ps is attributed to hydrogen bond weakening caused by the temperature rise. The slower process attributed to phase separation was observed for several nanoseconds, showing the number of hydrogen bond between TEA and water gradually decreased with time. The kinetics of hydrogen bond scission during phase separation indicated a linear growth of the phase-separated component, as observed previously on the nanosecond time scale, rather than the more usual exponential growth. A peak blueshift was observed in the difference Raman spectra during phase separation. This shift implies that hydrogen bond scission of TEA-water aggregates involving very few water molecules took place in the initial stage of phase separation (up to 2 ns), and then was followed by the breaking of TEA-water pairs surrounded by water molecules. This effect may be a result from spatial inhomogeneities associated with the phase separation process: aggregates or clusters existing naturally in solution even below the lower critical soluble temperature.
منابع مشابه
Transport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube
In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...
متن کاملUnsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture
3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...
متن کاملCalculation of Physical Properties of the Methanol-Water Mixture Using Molecular Dynamics Simulation
In this study some properties ofthe methanol-water mixture such as diffusivity, density, viscosity, and hydrogen bonding were calculated at different temperatures and <span style="font-size: 10pt; colo...
متن کاملMixed Molecular and Dissociative Water Adsorption on MgO[100]
First principles molecular dynamics (MD) simulations, of water adsorption on the MgOf100g surface, was performed to determine the molecular structure and chemical nature of the adsorbed water at varying coverage. Dissociative adsorption was stabilized by hydrogen bond donation from neighboring water molecules. The dissociation barrier had a strong dependence on coverage. Spontaneous dissociatio...
متن کاملFemtosecond Hydrogen Bond Dynamics of Bulk‐like and Bound Water at Positively and Negatively Charged Lipid Interfaces Revealed by 2D HD‐VSFG Spectroscopy
Interfacial water in the vicinity of lipids plays an important role in many biological processes, such as drug delivery, ion transportation, and lipid fusion. Hence, molecular-level elucidation of the properties of water at lipid interfaces is of the utmost importance. We report the two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) study of the OH stretch of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
دوره 13 6 شماره
صفحات -
تاریخ انتشار 2014