An optimized finite element extrapolating method for 2D viscoelastic wave equation
نویسندگان
چکیده
In this study, we first present a classical finite element (FE) method for a two-dimensional (2D) viscoelastic wave equation and analyze the existence, stability, and convergence of the FE solutions. Then we establish an optimized FE extrapolating (OFEE) method based on a proper orthogonal decomposition (POD) method for the 2D viscoelastic wave equation and analyze the existence, stability, and convergence of the OFEE solutions and furnish the implement procedure of the OFEE method. Finally, we furnish a numerical example to verify that the numerical computing results correspond with the theoretical ones. This signifies that the OFEE method is feasible and efficient for solving the 2D viscoelastic wave equation.
منابع مشابه
Solution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملRheological Response and Validity of Viscoelastic Model Through Propagation of Harmonic Wave in Non-Homogeneous Viscoelastic Rods
This study is concerned to check the validity and applicability of a five parameter viscoelastic model for harmonic wave propagating in the non-homogeneous viscoelastic rods of varying density. The constitutive relation for five parameter model is first developed and validity of these relations is checked. The non-homogeneous viscoelastic rods are assumed to be initially unstressed and at rest....
متن کاملStabilized finite volume element method for the 2D nonlinear incompressible viscoelastic flow equation
In this article, we devote ourselves to building a stabilized finite volume element (SFVE) method with a non-dimensional real together with two Gaussian quadratures of the nonlinear incompressible viscoelastic flow equation in a two-dimensional (2D) domain, analyzing the existence, stability, and error estimates of the SFVE solutions and verifying the validity of the preceding theoretical concl...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017