Matter-wave scattering from ultracold atoms in an optical lattice.
نویسندگان
چکیده
We study matter-wave scattering from an ultracold, many-body atomic system trapped in an optical lattice. The angular cross section of the target lattice for a matter wave is determined and is demonstrated to have a strong dependence on the many-body phase, superfluid, or Mott insulator. Analytical approaches are employed deep in the superfluid and Mott-insulator regimes, while intermediate points in the phase transition are treated numerically. Matter-wave scattering offers a convenient method for nondestructively probing the quantum many-body phase transition of atoms in an optical lattice.
منابع مشابه
Light scattering from ultracold atoms in optical lattices as an optical probe of quantum statistics
We study off-resonant collective light scattering from ultracold atoms trapped in an optical lattice. Scattering from different atomic quantum states creates different quantum states of the scattered light, which can be distinguished by measurements of the spatial intensity distribution, quadrature variances, photon statistics, or spectral measurements. In particular, angle-resolved intensity m...
متن کاملLiquid-crystalline phases of ultracold atoms
When atoms move in a standing wave created by two counterpropagating laser beams, they experience a periodic potential. This potential arises because the electric field in the standing wave induces an electric dipole in the atoms, which in turn seek out the most intense regions of electric field. Atoms in optical lattice potentials can simulate a variety of condensed matter phenomena including,...
متن کاملVeselago lensing with ultracold atoms in an optical lattice.
Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. H...
متن کاملProbing and Preparing Novel States of Quantum Degenerate Rubidium Atoms in Optical Lattices
Ultracold atoms in optical lattices are promising systems to realize and study novel quantum mechanical phases of matter with the control and precision offered by atomic physics. Towards this goal, as important as engineering new states of matter is the need to develop new techniques to probe these systems. I first describe our work on realizing Bragg scattering of infrared light from ultracold...
متن کاملA quasi-Hermitian pseudopotential for higher partial wave scattering
We formulate a new quasi-Hermitian delta-shell pseudopotential for higher partial wave scattering, and show that any such potential must have an energy-dependent regularization. The quasiHermiticity of the Hamiltonian leads to a complete set of biorthogonal wave functions that can be used as a basis to expand and diagonalize other two-body Hamiltonians. We demonstrate this procedure for the cas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 105 3 شماره
صفحات -
تاریخ انتشار 2010