A multi-class classification MCLP model with particle swarm optimization for network intrusion detection
نویسندگان
چکیده
The critical data we share through computer network gets stolen by unethical means. This unethical way of accessing one’s data without proper authentication becomes intrusion. To solve this issue, in this paper we propose a new network intrusion detection method, Multi-Class Classification Multiple Criteria Linear Programming (MCC-MCLP) model. MCLP is a mathematical classification technique that is used widely to solve real-time data mining problems. So far, the literature discusses only about binary classification MCLP. But in this paper we propose a Multi-Class Classification MCLP model. We use PSO for fine-tuning the parameters of MCC-MCLP. KDD CUP 99 data set is used for performance evaluation of the proposed method. Our MCCMCLP method classifies the data better and helps in fine-tuning the parameters with the help of PSO. The results clearly show that the proposed model performs better in terms of detection rate, false alarm rate and accuracy.
منابع مشابه
Negative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملIntrusion Detection Using a New Particle Swarm Method and Support Vector Machines
Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-k...
متن کاملA Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network
Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...
متن کاملNovel Multi-Objective Artificial Bee Colony Optimization for Wrapper Based Feature Selection in Intrusion Detection
This study proposes a novel approach based on multi-objective artificial bee colony (ABC) for feature selection, particularly for intrusion-detection systems. The approach is divided into two stages: generating the feature subsets of the Pareto front of non-dominated solutions in the first stage and using the hybrid ABC and particle swarm optimization (PSO) with a feed-forward neural network (F...
متن کاملNetwork Intrusion Detection Based on PSO-SVM
In order to improve network intrusion detection precision, this paper proposed a network intrusion detection model based on simultaneous selecting features and parameters of support vector machine (SVM) by particle swarm optimization (PSO) algorithm. Firstly, the features and parameters of SVM are coded to particle, and then the PSO is used to find the optimal features and SVM parameters by col...
متن کامل