Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter

نویسندگان

  • Adrien M. Bizeray
  • Shi Zhao
  • Stephen Duncan
  • David A. Howey
چکیده

This paper investigates the state estimation of a high-fidelity spatially resolved thermalelectrochemical lithium-ion battery model commonly referred to as the pseudo two-dimensional model. The partial-differential algebraic equations (PDAEs) constituting the model are spatially discretised using Chebyshev orthogonal collocation enabling fast and accurate simulations up to high C-rates. This implementation of the pseudo-2D model is then used in combination with an extended Kalman filter algorithm for differential-algebraic equations to estimate the states of the model. The state estimation algorithm is able to rapidly recover the model states from current, voltage and temperature measurements. Results show that the error on the state estimate falls below 1 % in less than 200 s despite a 30 % error on battery initial state-of-charge and additive measurement noise with 10 mV and 0.5 K standard deviations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ARC Collaborative Research Seminar Series Winter 2010

We will show how an electrochemical lithium-ion battery model is approximated with electrodeaveraged solid diffusion dynamics and parameterized through a reasonable set of experimental data. The parameterized model renders the critical solid-electrolyte surface charge as observable and allows the application of an extended Kalman filter for state of charge (SOC) estimation from the measured vol...

متن کامل

A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

This paper presents a novel data-driven based approach for the estimation of the state of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter (AEKF). A modified second-order RC network based battery model is employed for the state estimation. Based on the battery model and experimental data, the SoC variation per mV voltage for different types ...

متن کامل

Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter

This paper presents a numerical calculation of the evolution of the spatially resolved solid concentration in the two electrodes of a lithium-ion cell. The microscopic solid concentration is driven by the macroscopic Butler–Volmer current density distribution, which is consequently driven by the applied current through the boundary conditions. The resulting, mostly causal, implementation of the...

متن کامل

On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part II. State estimation via impedance-based temperature sensing

Impedance-based temperature detection (ITD) is a promising approach for rapid estimation of internal cell temperature based on the correlation between temperature and electrochemical impedance. Previously, ITD was used as part of an Extended Kalman Filter (EKF) state-estimator in conjunction with a thermal model to enable estimation of the 1-D temperature distribution of a cylindrical lithium-i...

متن کامل

PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using an Electrochemical Model-driven Extended Kalman Filter

This paper presents a numerical calculation of the evolution of the spatially-resolved solid concentration in the two electrodes of a lithium-ion cell. The microscopic solid concentration is driven by the macroscopic Butler Volmer current density distribution which is consequently driven by the applied current through the boundary conditions. The resulting, mostlycausal, implementation of the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.08689  شماره 

صفحات  -

تاریخ انتشار 2015