On the existence of mild solutions of a nonconvex evolution inclusion

نویسنده

  • Aurelian Cernea
چکیده

We prove a Filippov type existence theorem for mild solutions of a nonconvex evolution inclusion by applying the contraction principle in the space of selections of the multifunction instead of the space of solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition

In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.

متن کامل

On the existence of mild solutions for nonconvex fractional semilinear differential inclusions

We establish some Filippov type existence theorems for solutions of fractional semilinear differential inclusions involving Caputo’s fractional derivative in Banach spaces.

متن کامل

A Note on Mild Solutions for Nonconvex Fractional Semilinear Differential Inclusions∗

We consider a Cauchy problem for a fractional semilinear differential inclusions involving Caputo’s fractional derivative in non separable Banach spaces under Filippov type assumptions and we prove the existence of solutions. MSC: 34A60, 26A33, 34B15 keywords: fractional derivative, fractional semilinear differential inclusion, Lusin measurable multifunctions.

متن کامل

Stability Of Unilateral Problem With Nonconvex Constraints∗

In this paper, we focuses on stability, asymptotical stability and finite-time stability for a class of differential inclusions governed by a nonconvex superpotential. This problem is known by "evolution hemivariational inequalities". After proposing an existence result of solutions, we give the stability results in terms of smooth Lyapunov functions subjected to some conditions described in te...

متن کامل

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008