Crack Tip Micromaching by Femtosecond Laser for Fracture Testing of Metal Laminates

نویسندگان

  • Ricardo Martin Martinez
  • Ricardo M. Martinez
  • Yu-Lin Shen
  • Mehran Tehrani
  • Quinn McCulloch
  • Ricardo Martinez
  • Steve Gilbertson
چکیده

This thesis presents an experimental study of the effects of ultrafast laser ablation on the mechanical properties of metal laminates followed by FEA simulation to elucidate future experimental potential. The metals investigated are copper, niobium, and copper/niobium accumulative roll bonded (ARB) laminates. The two laminate materials in this study have a nominal layer thickness of 1.8 microns and 65 nanometers; the effects of the laser processing on the ARB materials are characterized in the rolling direction as well as the transverse direction as the material exhibits anisotropic properties. The aforementioned materials are examined via scanning electron microscopy and energy dispersive spectroscopy techniques to obtain changes in layer restructuring and modification. The motivation of this study is to characterize the heat affected zone in the materials produced by ultrafast laser processing to determine whether ultrafast laser ablation is a viable method for creating artificial cracks for SEM in-situ mini cantilever fracture testing. A parameter space is defined to attempt to capture an acceptable set of laser settings which both reduce the heat affected zone and create an etched geometry mimicking a crack into the sample to facilitate crack propagation in bend testing. Finally, simulation is performed using ANSYS to determine sample geometry constraints induced by both the laser-notched crack tip’s geometry and the limitations of the experimental

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crack Tip Constraint for Anisotropic Sheet Metal Plate Subjected to Mode-I Fracture

On the ground of manufacturing, sheet metal parts play a key role as they cover about half of the production processes. Sheet metals are commonly obtained from rolling and forming processes which causes misalignment of micro structure resulting obvious anisotropic characteristics and micro cracks. Presence of micro cracks poses serious attention, when stresses at the tip reach to the critical v...

متن کامل

NUMERICAL ANALYSIS OF THE INFLUENCE OF STOPPING HOLES IN THE CRACK GROWTH

The fracture and crack growth of mechanical structures is a usual phenomenon which is due to the application of tensile, cyclic loading or thermal stresses on the structure. So introducing of methods to prevent the crack growth is useful. Afterward, one of the repairing methods of crack growth, consisting to make a hole in the crack tip to elimi-nate the sharp corners, was explained. This metho...

متن کامل

On the Calculation of Energy Release Rates for Cracked Laminates with Residual Stresses

Prior methods for calculating energy release rate in cracked laminates were extended to account for heterogeneous laminates and residual stresses. The method is to partition the crack tip stresses into local bending moments and normal forces. A general equation is then given for the total energy release rate in terms of the crack-tip moments and forces and the temperature difference experienced...

متن کامل

A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis

Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...

متن کامل

Fatigue-Crack Propagation Behavior of Ductile/Brittle Laminated Composites

A study has been made of the fatigue-crack propagation properties of a series of laminated Nbreinforced Nb3Al intermetallic-matrix composites with varying microstructural scale but nominally identical reinforcement volume fraction (20 pct Nb). It was found that resistance to fatigue-crack growth improved with increasing metallic layer thickness (in the range 50 to 250 mm) both in the crack-divi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016