Enhanced Multiferroic Properties of YMnO3 Ceramics Fabricated by Spark Plasma Sintering Along with Low-Temperature Solid-State Reaction
نویسندگان
چکیده
Based on precursor powders with a size of 200-300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO₃ ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO₃ ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO₃ ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications.
منابع مشابه
Effect of Sintering Temperature on Structural, Dielectric, and Magnetic Properties of Multiferroic YFeO3 Ceramics Fabricated by Spark Plasma Sintering
Based on precursor powders with a size of 200-300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO₃ ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO₃ ceramics can be prepared using SPS, while the results from X-ray photoelectron spectrosco...
متن کاملThe Effect of Europium Doping on the Structural and Magnetic Properties of GdMnO3 Multiferroic Ceramics
Single phase Eu doped GdMnO3 ceramics were prepared using solid state reaction route. Several different characterization techniques were used to investigate the structural and magnetic properties of the samples, including X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and Vibrating Sample Magnetometer (VSM). All samples indicated single p...
متن کاملEffect of SiC nanoparticles addition on mechanical properties and wear resistance of cemented carbides fabricated by spark plasma sintering
WC-10Co cemented carbides containing 1 to 4 wt% SiC nanoparticles were prepared by spark plasma sintering. The effects of SiC content on microstructure, mechanical properties and wear resistance of the sintered materials were studied. Microstructural studies showed that SiC addition resulted in WC grain coarsening. In addition, the hardness decreased with increasing SiC content. However, the fr...
متن کاملSpark Plasma Sintering of Ultra-High Temperature Tantalum/Hafnium Carbides Composite
TaC and HfC are thought to have the highest melting point (~4000°C) among all refractory materials. The binary solid solution of TaC and HfC (Ta4HfC5) is also considered as the most refractory material with the melting point over 4000 °C and valuable physical and mechanical properties. The main goal of this work is to fabricate TaC/HfCbased composites which consolidated by means of spark plasma...
متن کاملMicrostructure of spark plasma sintered TiB2 and TiB2–AlN ceramics
In this research study, the effects of aluminum nitride (AlN) additive on the densification behavior and microstructure development of titanium diboride (TiB2) based ceramic matrix composite were investigated. In this way, a monolithic TiB2 ceramic and a TiB2–5 wt% AlN ultrahigh temperature ceramic composite were fabricated by spark plasma sintering (SPS) proces...
متن کامل