An Information Systems Teaching Case: Bayesian Probability Applied to Spam eMail Filters

نویسندگان

  • Samuel S. Conn
  • Daniel M. Likarish
چکیده

Information Systems professionals can participate in the strategic planning and policy development of the business organization by applying sound techniques for rational decision making. Decision Support Systems often utilize inferential techniques to provide analysis and knowledge creation for business and its information systems. One common method of reasoning under uncertainty is the application of the Bayesian probability model. This teaching case can be used in an Information Systems program to teach one method of inferential reasoning as applied to policy and business rules for spam email filters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

Machine Learning for Naive Bayesian Spam Filter Tokenization

Background Traditional client level spam filters rely on rule based heuristics. While these filters can be effective they have several limitations. The rules must be created by hand. This requires the filter creator to examine a corpus of spam and cull out characteristics. This is a time consuming process and it is easy to miss rules which are quite effective at detecting spam. While the word ”...

متن کامل

Image spam filtering using textual and visual information

In this paper we focus on the so-called image spam, which consists in embedding the spam message into images attached to e-mails to circumvent statistical techniques based on the analysis of body text of e-mails (like the “bayesian filters”), and in applying content obscuring techniques to such images to make them unreadable by standard OCR systems without compromising human readability. We arg...

متن کامل

Variable Thresholding In Naïve Bayesian Spam Filters

Email has become an essential means of communication for both business and personal use. However, the proliferation of unwanted email advertising or spam has cost organizations millions of dollars and has reduced the effectiveness of email as a communications medium. Recently, spam filters have been widely adopted as a means of combating these unwanted messages. This paper presents a method for...

متن کامل

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005