Classification of Intrusion Detection using PSO-SVM and Improved Decision Tree

نویسنده

  • Stuti Tiwari
چکیده

Intrusion Detection is an efficient way of detecting the abnormal behavior of packets in the network, Although in data mining there are various effective decision tree based algorithms are implemented for the classification and detection of Intrusions in KDDCup99 Dataset. Here an efficient technique is implemented for the classification and detection of Intrusions in KDDCup99 Dataset using Feature Selection and Decision Tree based algorithms. The Proposed methodology works in two Stages Feature Selection using Particle Swarm Optimization with Optimization of PSO by Support Vector Machine and then Classification of Intrusion using Horizontal Partition Decision Tree. The Proposed Methodology implemented is more efficient in comparison with Decision Tree based algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Research on Intrusion Detection System Based on Improved PSO-SVM algorithm

With the rapid development of Internet, the network topology structure becomes more and more complex, so that the monitoring of network attack has become quite difficult. The traditional passive defence strategy has been unable to meet the demand of network information security. How to effectively detect and prevent the network intrusion have become an important matter in the field of computer ...

متن کامل

راهکار ترکیبی نوین جهت تشخیص نفوذ در شبکه‌های کامپیوتری با استفاده از الگوریتم-های هوش محاسباتی

In this paper, a novel hybrid method is proposed for intrusion detection in computer networks using combination of misuse-based and anomaly-based detection models with the aim of performance improvement. In the proposed hybrid approach, a set of algorithms and models is employed. The selection of input features is performed using shuffled frog-leaping (SFL) algorithm. The misuse detection modul...

متن کامل

A Hybrid Intrusion Detection System Based on C5.0 Decision Tree Algorithm and One- Class SVM with CFA

Cyber security threats have become increasingly sophisticated and complex. Intrusion detection which is one of the major problems in computer security has the main goal to detect infrequent access or attacks and to protect internal networks. A new hybrid intrusion detection method combining multiple classifiers for classifying anomalous and normal activities in the computer network is presented...

متن کامل

Network Intrusion Detection Based on PSO-SVM

In order to improve network intrusion detection precision, this paper proposed a network intrusion detection model based on simultaneous selecting features and parameters of support vector machine (SVM) by particle swarm optimization (PSO) algorithm. Firstly, the features and parameters of SVM are coded to particle, and then the PSO is used to find the optimal features and SVM parameters by col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017