Contact mechanics and wear simulations of hip resurfacing devices using computational methods.

نویسندگان

  • Murat Ali
  • Ken Mao
چکیده

The development of computational and numerical methods provides the option to study the contact mechanics and wear of hip resurfacing devices. The importance of these techniques is justified by the extensive amount of testing and experimental work required to verify and improve current orthopaedic implant devices. As the demands for device longevity is increasing, it is as important as ever to study techniques for providing much needed orthopaedic hip implant solutions. Through the use of advanced computer aided design and the finite element method, contact analysis of hip resurfacing devices was carried out by developing both three-dimensional and two-dimensional axisymmetric models whilst considering the effects of loading conditions and material properties on the contact stresses. Following on from this, the three-dimensional model was used in combination with a unique programme to develop wear simulations and obtain cumulative wear for both the acetabular cup and femoral head simultaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hip Resurfacing Using Highly Cross-linked Polyethylene: Prospective Study Results at 8.5 Years.

BACKGROUND Hip resurfacing is an option to consider when treating younger, more active patients. Advantages over total hip arthroplasty include a more normal gait and a lower incidence of thigh pain. METHODS In this prospective study, 190 hip resurfacing procedures (164 participants) were performed using a cobalt-chromium femoral component and a cementless acetabular cup with a 3.8-mm highly ...

متن کامل

In vivo evaluation of edge-loading in metal-on-metal hip resurfacing patients with pseudotumours

OBJECTIVES Pseudotumours (abnormal peri-prosthetic soft-tissue reactions) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have been associated with elevated metal ion levels, suggesting that excessive wear may occur due to edge-loading of these MoM implants. This study aimed to quantify in vivo edge-loading in MoMHRA patients with and without pseudotumours during functional activ...

متن کامل

Retrieval analysis of 240 metal-on-metal hip components, comparing modular total hip replacement with hip resurfacing.

This study compared component wear rates and pre-revision blood metal ions levels in two groups of failed metal-on-metal hip arthroplasties: hip resurfacing and modular total hip replacement (THR). There was no significant difference in the median rate of linear wear between the groups for both acetabular (p = 0.4633) and femoral (p = 0.0872) components. There was also no significant difference...

متن کامل

Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and volumetric wear.

We sought to establish the incidence of joint failure secondary to adverse reaction to metal debris (ARMD) following metal-on-metal hip resurfacing in a large, three surgeon, multicentre study involving 4226 hips with a follow-up of 10 to 142 months. Three implants were studied: the Articular Surface Replacement; the Birmingham Hip Resurfacing; and the Conserve Plus. Retrieved implants underwen...

متن کامل

A Computational Wear Model of the Oblique Impact of a Ball on a Flat Plate

Many wearing processes are a result of the oblique impacts. Knowing the effective impact parameters on the wear mechanism would be helpful to have the more reliable designs. The H-DD (Hertz-Di Maio Di Renzo) nonlinear model of impact followed by the time increment procedure is used to simulate the impact process of a ball on a flat plate. Restitution parameters are extracted and compared with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta of bioengineering and biomechanics

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2014