Direct insulin signaling of neurons reverses diabetic neuropathy.

نویسندگان

  • Valentine Brussee
  • F Alexander Cunningham
  • Douglas W Zochodne
چکیده

Diabetic polyneuropathy is the most common acquired diffuse disorder of the peripheral nervous system. It is generally assumed that insulin benefits human and experimental diabetic neuropathy indirectly by lowering glucose levels. Insulin also provides potent direct support of neurons and axons, and there is a possibility that abnormalities in direct insulin signaling on peripheral neurons relate to the development of this disorder. Here we report that direct neuronal (intrathecal) delivery of low doses of insulin (0.1-0.2 IU daily), insufficient to reduce glycemia or equimolar IGF-I but not intrathecal saline or subcutaneous insulin, improved and reversed slowing of motor and sensory conduction velocity in rats rendered diabetic using streptozotocin. Moreover, insulin and IGF-I similarly reversed atrophy in myelinated sensory axons in the sural nerve. That intrathecal insulin had the capability of signaling sensory neurons was confirmed by observing that fluorescein isothiocyanate-labeled insulin given intrathecally accessed and labeled individual lumbar dorsal root ganglion neurons. Moreover, we confirmed that such neurons express the insulin receptor, as previously suggested by Sugimoto et al. Finally, we sequestered intrathecal insulin in nondiabetic rats using an anti-insulin antibody. Conduction slowing and axonal atrophy resembling the changes in diabetes were generated by anti-insulin but not by an anti-rat albumin antibody infusion. Defective direct signaling of insulin on peripheral neurons through routes that include the cerebrospinal fluid may relate to the development of diabetic peripheral neuropathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensory Neuron Insulin Signaling and Its Role in Diabetic Neuropathy

...................................................................................................................................................... iii Dedication ................................................................................................................................................... iv Acknowledgements ..................................................................

متن کامل

Insulin Receptor Substrate 2 Expression and Involvement in Neuronal Insulin Resistance in Diabetic Neuropathy

Insulin signaling depends on tyrosine phosphorylation of insulin receptor substrates (IRSs) to mediate downstream effects; however, elevated serine phosphorylation of IRS impairs insulin signaling. Here, we investigated IRS protein expression patterns in dorsal root ganglia (DRG) of mice and whether their signaling was affected by diabetes. Both IRS1 and IRS2 are expressed in DRG; however, IRS2...

متن کامل

Peripheral nervous system insulin resistance in ob/ob mice

BACKGROUND A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo resu...

متن کامل

Glucagon-like peptide 1, insulin, sensory neurons, and diabetic neuropathy.

Like insulin, glucagon-like peptide 1 (GLP-1) may have direct trophic actions on the nervous system, but its potential role in supporting diabetic sensory neurons is uncertain. We identified wide expression of GLP-1 receptors on dorsal root ganglia sensory neurons of diabetic and nondiabetic mice. Exendin-4, a GLP-1 agonist, increased neurite outgrowth of adult sensory neurons in vitro. To dete...

متن کامل

Histopathological and behavioral evaluations of the effects of crocin, safranal and insulin on diabetic peripheral neuropathy in rats

Objectives: Crocin and safranal, the major constituents of saffron, exert neuroprotective effects. In the present study, we investigated the effects of crocin and safranal  (alone or in combination with insulin) on peripheral neuropathy in diabetic rats. Materials and Methods: Diabetes was induced by intraperitoneal (i.p.) injection of 60 mg/kg of streptozotocin (STZ) and confirmed by blood glu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 53 7  شماره 

صفحات  -

تاریخ انتشار 2004