Similarity Measure for Vector Field Learning

نویسندگان

  • Hongyu Li
  • I-Fan Shen
چکیده

Vector data containing direction and magnitude information other than position information is different from common point data only containing position information. Those general similarity measures for point data such as Euclidean distance are not suitable for vector data. Thus, a novel measure must be proposed to estimate the similarity between vectors. The similarity measure defined in this paper combines Euclidean distance with angle and magnitude differences. Based on this measure, we construct a vector field space on which a modified locally linear embedding (LLE) algorithm is used for vector field learning. Our experimental results show that the proposed similarity measure works better than traditional Euclidean distance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators

Plenty of researches have been carried out, focusing on the measures of distance, similarity, and correlation between intuitionistic fuzzy sets (IFSs).However, most of them are single-valued measures and lack of potential for efficiency validation.In this paper, a new vector valued similarity measure for IFSs is proposed based on OWA operators.The vector is defined as a two-tuple consisting of ...

متن کامل

SOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS AND THEIR APPLICATIONS

In this work, we shall present some novel process to measure the similarity between picture fuzzy sets. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity measures between picture fuzzy sets, such as, cosine similarity measure, weighted cosine similarity measure, set-theoretic similar...

متن کامل

Category Similarity as a Predictor for SVM Learning Performance

In this paper we propose a method for the prediction of learning performance in Support Vector Machines based on a novel definition of intraand inter-class similarity. Our measure of category similarity can be easily estimated from the learning data. In the second part of the paper we provide experimental evidence to support the effectiveness of this measure.

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Learning Similarity Measure for Natural Image Retrieval with Relevance Feedback

A new scheme of learning similarity measure is proposed for content-based image retrieval (CBIR). It learns a boundary that separates the images in the database into two clusters. Images inside the boundary are ranked by their Euclidean distances to the query. The scheme is called constrained similarity measure (CSM), which not only takes into consideration the perceptual similarity between ima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006