Mixed finite elements for numerical weather prediction

نویسندگان

  • Colin J. Cotter
  • Jemma Shipton
چکیده

We show how mixed finite element methods that satisfy the conditions of finite element exterior calculus can be used for the horizontal discretisation of dynamical cores for numerical weather prediction on pseudo-uniform grids. This family of mixed finite element methods can be thought of in the numerical weather prediction context as a generalisation of the popular polygonal C-grid finite difference methods. There are a few major advantages: the mixed finite element methods do not require an orthogonal grid, and they allow a degree of flexibility that can be exploited to ensure an appropriate ratio between the velocity and pressure degrees of freedom so as to avoid spurious mode branches in the numerical dispersion relation. These methods preserve several properties of the C-grid method when applied to linear barotropic wave propagation, namely: a) energy conservation, b) mass conservation, c) no spurious pressure modes, and d) steady geostrophic modes on the f -plane. We explain how these properties are preserved, and describe two examples that can be used on pseudo-uniform grids: the recently-developed modified RTk-Q(k-1) element pairs on quadrilaterals and the BDFM1-P1DG element pair on triangles. All of these mixed finite element methods have an exact 2:1 ratio of velocity degrees of freedom to pressure degrees of freedom. Finally we illustrate the properties with some numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compatible finite element methods for numerical weather prediction

This article takes the form of a tutorial on the use of a particular class of mixed finite element methods, which can be thought of as the finite element extension of the C-grid staggered finite difference method. The class is often referred to as compatible finite elements, mimetic finite elements, discrete differential forms or finite element exterior calculus. We provide an elementary introd...

متن کامل

Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements

Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...

متن کامل

Numerical Prediction of Stator Diameter Effect on the Output Torque of Ultrasonic Traveling-wave Motor, using Finite Elements Simulation

Nowadays, piezoelectric materials have wide applications in various industries. Therefore, investigation of these materials and their applications has a special importance. In this paper first, the natural frequencies of a traveling-wave piezoelectric motor are achieved, using finite elements simulations. Then, applying an alternative electrical voltage to the piezoelectric ring, a traveling wa...

متن کامل

An accurate and efficient numerical framework for adaptive numerical weather prediction

We present an accurate and efficient discretization approach for the adaptive discretization of typical model equations employed in numerical weather prediction. A semi-Lagrangian approach is combined with the TR-BDF2 semi-implicit time discretization method and with a spatial discretization based on adaptive discontinuous finite elements. The resulting method has full second order accuracy in ...

متن کامل

Numerical Solution for Heave of Expansive Soils

A numerical solution for heave prediction is developed within the context theories for both saturated and unsaturated soil behaviors. Basically, lowering the potential level of compressing on a saturated layer will cause heaving due to water absorption. This water absorption is in an opposite way, similar to water dissipation as what happens during unloading in consolidation process. However, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012