On the Ring of Unipotent Vector Bundles on Elliptic Curves in Positive Characteristics

نویسنده

  • STEFAN SCHRÖER
چکیده

Using Fourier–Mukai transformations, we prove some results about the ring of unipotent vector bundles on elliptic curves in positive characteristics. This ring was determined by Atiyah in characteristic zero, who showed that it is a polynomial ring in one variable. It turns out that the situation in characteristic p > 0 is completely different and rather bizarre: the ring is nonnoetherian and contains a subring whose spectrum contains infinitely many copies of Spec(Z), which are glued with successively higher and higher infinitesimal identification at the point corresponding to the prime p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffie-Hellman type key exchange protocols based on isogenies

‎In this paper‎, ‎we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves‎. ‎The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $‎, ‎is a straightforward generalization of elliptic curve Diffie-Hellman key exchange‎. ‎The method uses commutativity of the endomorphism ring $ End(E) $‎. ‎Then using dual isogenies‎, ‎we propose...

متن کامل

Fourier-Mukai transforms and stable bundles on elliptic curves

We prove Atiyah's classi cation results about indecomposable vector bundles on an elliptic curve by applying the Fourier-Mukai transform. We extend our considerations to semistable bundles and construct the universal stable sheaves. MSC 2000: 14H60 Vector bundles on curves and their moduli, 14H52 Elliptic curves.

متن کامل

A Note on the Verlinde Bundles on Elliptic Curves

We study the splitting properties of the Verlinde bundles over elliptic curves. Our methods rely on the explicit description of the moduli space of semistable vector bundles on elliptic curves, and on the analysis of the symmetric powers of the Schrödinger representation of the Theta group.

متن کامل

1 1 Ju l 2 00 3 The Theory of Tight Closure from the Viewpoint of Vector Bundles

Contents Introduction 3 1. Foundations 13 1.1. A survey about the theory of tight closure 13 1.2. Solid closure and forcing algebras 23 1.3. Cohomological dimension 25 1.4. Vector bundles, locally free sheaves and projective bundles 28 2. Geometric interpretation of tight closure via bundles 30 2.1. Relation bundles 30 2.2. Affine-linear bundles arising from forcing algebras 32 2.3. Cohomology ...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009