Effective Sampling: Fast Segmentation Using Robust Geometric Model Fitting
نویسندگان
چکیده
Identifying the underlying models in a set of data points contaminated by noise and outliers, leads to a highly complex multi-model fitting problem. This problem can be posed as a clustering problem by the projection of higher order affinities between data points into a graph, which can then be clustered using spectral clustering. Calculating all possible higher order affinities is computationally expensive. Hence in most cases only a subset is used. In this paper, we propose an effective sampling method to obtain a highly accurate approximation of the full graph required to solve multi-structural model fitting problems in computer vision. The proposed method is based on the observation that the usefulness of a graph for segmentation improves as the distribution of hypotheses (used to build the graph) approaches the distribution of actual parameters for the given data. In this paper, we approximate this actual parameter distribution using a k-th order statistics based cost function and the samples are generated using a greedy algorithm coupled with a data sub-sampling strategy. The experimental analysis shows that the proposed method is both accurate and computationally efficient compared to the state-of-the-art robust multi-model fitting techniques. The code is publicly available from https://github.com/RuwanT/model-fitting-cbs.
منابع مشابه
Superpixel-Based Two-View Deterministic Fitting for Multiple-Structure Data
This paper proposes a two-view deterministic geometric model fitting method, termed Superpixel-based Deterministic Fitting (SDF), for multiplestructure data. SDF starts from superpixel segmentation, which effectively captures prior information of feature appearances. The feature appearances are beneficial to reduce the computational complexity for deterministic fitting methods. SDF also include...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملRobust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy
ÐThis paper addresses a common problem in the segmentation of range images. We would like to identify and fit surfaces of known type wherever these are a good fit. This paper presents methods for the least-squares fitting of spheres, cylinders, cones, and tori to 3D point data, and their application within a segmentation framework. Least-squares fitting of surfaces other than planes, even of si...
متن کاملThe Ordered Residual Kernel for Robust Motion Subspace Clustering
We present a novel and highly effective approach for multi-body motion segmentation. Drawing inspiration from robust statistical model fitting, we estimate putative subspace hypotheses from the data. However, instead of ranking them we encapsulate the hypotheses in a novel Mercer kernel which elicits the potential of two point trajectories to have emerged from the same subspace. The kernel perm...
متن کاملAccelerated Hypothesis Generation for Multi-structure Robust Fitting
Random hypothesis generation underpins many geometric model fitting techniques. Unfortunately it is also computationally expensive. We propose a fundamentally new approach to accelerate hypothesis sampling by guiding it with information derived from residual sorting. We show that residual sorting innately encodes the probability of two points to have arisen from the same model and is obtained w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.09437 شماره
صفحات -
تاریخ انتشار 2017