Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions.
نویسندگان
چکیده
The response of free nitrous acid (FNA)-adapted poly-phosphate accumulating organisms (PAOs) to FNA inhibition under aerobic and anoxic conditions was studied. Anoxic P-uptake was 1-6 times more sensitive to the inhibition compared to aerobic P-uptake. The aerobic nitrite reduction rate increased with FNA concentration, accompanied by an equivalent decrease in the oxygen uptake rate, suggesting under high FNA concentration conditions, electrons were channeled to nitrite reduction from oxygen reduction. In contrast, the nitrite reduction rate decreased with increased FNA concentration under anoxic conditions. Anaerobic metabolism of PAO under both anoxic and aerobic conditions was observed at high FNA concentrations. Growth of PAOs decreased sharply with FNA concentration and stopped completely at FNA concentration of 10 μg HNO(2)-N/L. This study, for the first time, investigated the function of nitrite/FNA in an aerobic denitrifying phosphate removal process by evaluating electron as well as energy balances, and provides explanation for FNA inhibition mechanisms.
منابع مشابه
Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.
Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nit...
متن کاملAn efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal
Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition o...
متن کاملStudy on Influence of Nitrate on Induction of Denitrifying Phosphate Accumulating Organisms
The enrichment of denitrifying phosphate accumulating organisms (DNPAOs) is the prerequisite for the denitrifying phosphate removal process. This study investigated the effect of nitrate concentration on the enrichment of DNPAOs was studied with batch experiments. The Sequencing Batch Reactor (SBR) was set-up with acetate as the sole carbon source. The addition of nitrate solution and the anoxi...
متن کاملPhosphorus accumulation by bacteria isolated from a continuous-flow two-sludge system.
In this article, polyphosphate-accumulating organisms (PAOs) from a lab-scale continuous-flow two-sludge system was isolated and identified, the different phosphorus accumulation characteristics of the isolates under anoxic and aerobic conditions were investigated. Two kinds of PAOs were both found in the anoxic zones of the two-sludge system, one of them utilized only oxygen as electron accept...
متن کاملGlucose-6-phosphate dehydrogenase regulation in the hepatopancreas of the anoxia-tolerant marine mollusc, Littorina littorea
Glucose-6-phosphate dehydrogenase (G6PDH) gates flux through the pentose phosphate pathway and is key to cellular antioxidant defense due to its role in producing NADPH. Good antioxidant defenses are crucial for anoxia-tolerant organisms that experience wide variations in oxygen availability. The marine mollusc, Littorina littorea, is an intertidal snail that experiences daily bouts of anoxia/h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 116 شماره
صفحات -
تاریخ انتشار 2012